
Identification and Estimation of Continuous

Time Dynamic Discrete Choice Games*

JASON R. BLEVINS

The Ohio State University

August 18, 2024

Abstract. This paper considers the theoretical, computational, and econometric prop-

erties of a class of continuous time dynamic discrete choice games with stochastically

sequential moves, introduced by Arcidiacono, Bayer, Blevins, and Ellickson (2016). In

particular, we consider identification of the rate of move arrivals in the model, which was

assumed to be known in previous work, as well as a generalized version of the model

with heterogeneous move arrival rates. We first re-establish conditions for existence of a

Markov perfect equilibrium in the generalized model and then consider identification

of the model primitives with only discrete time data sampled at a fixed time interval.

Three canonical models are considered: a single agent renewal model, a dynamic model

of entry and exit, and a quality ladder model of oligopoly dynamics. These models are

foundational for many applications in applied microeconomics. Through these exam-

ples we examine the computational properties of the model and statistical properties

of estimators via a series of small- and large-scale Monte Carlo experiments and an

empirical example using data from Rust (1987). The experiments shed light on how the

parameter estimates behave as one moves from continuous time data to discrete time data

of decreasing frequency and on the computational feasibility of the model as the number

of firms grows. The empirical example highlights the impact of allowing decision rates

to vary.
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namic games, identification.
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1. Introduction

This paper studies continuous-time econometric models of dynamic discrete choice games.

Work on continuous time dynamic games by Doraszelski and Judd (2012) and Arcidiacono,

Bayer, Blevins, and Ellickson (2016) (henceforth ABBE) and others was motivated by their

ability to allow researchers to compute and estimate more realistic, large-scale games and

to carry out complex counterfactual policy experiments which were previously infeasible

due to computational limitations.

Given the practical and conceptual benefits of continuous time models, the main goals

of this paper are to consider identification and estimation of the rate of move arrivals

in the original ABBE model, where this rate was assumed to be known. We further

consider identification in a generalized version of the model with additional heterogeneity

in the form of firm- and state-specific move arrival rates. We demonstrate the practical

utility of such specifications via three canonical models: a single agent renewal model, a

dynamic model of entry and exit, and a quality ladder model. We carry out an empirical

illustration using the original data of Rust (1987) to estimate a continuous time model with

heterogeneous move arrival rates across states and compare with the restricted form of

the original ABBE model. Based on the estimates, we carry out Monte Carlo experiments

to investigate the effects of estimating the model using discrete time data of varying

frequencies. Additionally, using the quality ladder model, we carry out a series of Monte

Carlo experiments to examine the computational feasibility of the model as the number of

*I am grateful for many useful comments from the editor and three anonymous referees, as well as helpful

discussions with seminar participants at Columbia University, Indiana University, Northwestern University,

Texas A&M University, the University of British Columbia, the University of Chicago, the University of Iowa,

the University of Michigan, and the University of Montreal, as well as conference attendees at the 2013 Meeting

of the Midwest Econometrics Group, the 2014 Meeting of the Midwest Economics Association, the 2014

University of Calgary Empirical Microeconomics Workshop, the 2015 Econometric Society World Congress

and the 2019 International Association for Applied Econometrics conference. This work builds on previous

joint research with Peter Arcidiacono, Patrick Bayer, and Paul Ellickson and has benefited tremendously from

our many discussions together.
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firms grows.

For many economic models there is not a natural, fixed time interval at which agents

make decisions. Despite this, it has been standard practice for applied researchers to

calibrate the decision interval in their empirical model to the sampling interval of the

data. However, continuous-time modeling offers a more flexible and natural framework

by allowing agents to make decisions asynchronously at stochastic points in time. This

approach not only eliminates simultaneous moves, where multiple agents act at exactly the

same time, but also introduces sequentiality, where one agent’s action precedes another’s.

This sequential nature of decision-making better reflects real-world scenarios and can lead

to significant computational advantages.

Another advantage of continuous-time modeling is the ability to reduce the multiplicity

of equilibria by eliminating simultaneous moves. While it does not completely eliminate

multiplicity, this simplifies estimation and the ability to conduct meaningful counterfactual

simulations. Therefore, another benefit of allowing for heterogeneity in move arrival rates

is to reduce symmetry in the model and thereby remove another source of multiplicity of

equilibria.

Modeling economic processes in continuous time dates back at least several decades to

work in time series econometrics by Phillips (1972, 1973), Sims (1971), Geweke (1978), and

Geweke, Marshall, and Zarkin (1986) and work on longitudinal models by Heckman and

Singer (1986). Despite this early work on continuous time models, discrete time models

became the de facto standard for dynamic discrete choice and now have a long, successful

history in structural applied microeconometrics starting with the pioneering work of Gotz

and McCall (1980), Miller (1984), Pakes (1986), Rust (1987), and Wolpin (1984). A recent

series of papers (Aguirregabiria and Mira, 2007; Bajari, Benkard, and Levin, 2007; Pakes,

Ostrovsky, and Berry, 2007; Pesendorfer and Schmidt-Dengler, 2008) have shown how to

extend two-step estimation techniques, originally developed by Hotz and Miller (1993) and

Hotz, Miller, Sanders, and Smith (1994) in the context of single-agent dynamics, to more

complex multi-agent settings. The computation of multi-agent models remains formidable,
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despite a growing number of methods for solving for equilibria (Pakes and McGuire, 1994,

2001; Doraszelski and Satterthwaite, 2010).

Dynamic decision problems are inherently complex and high-dimensional, especially

in strategic games where multiple players interact. In discrete-time models, the simulta-

neous actions of players introduces a further layer of complexity, as one must calculate

expectations over all possible combinations of rivals’ actions. This exponentially increases

the number of future states that need to be evaluated, making it infeasible to compute the

equilibrium in many economic environments. This unfortunate reality has severely limited

the scale and the degree of heterogeneity in applied work using these methods.

Doraszelski and Judd (2012) demonstrated that continuous-time models, on the other

hand, enjoy significant computational advantages. They offer a solution to this problem

by eliminating simultaneous moves and ensuring that state changes occur sequentially,

one agent at a time. Expectations over rival actions in these models grow linearly with

the number of players, rather than exponentially. As a result, continuous-time models

significantly reduce the computational burden, allowing for faster and more scalable

computation of equilibria.

ABBE demonstrated the empirical tractability of continuous-time games, particularly

for applications in industrial organization. They developed an econometric model which

retains the computational advantages of continuous time models while incorporating

many familiar discrete choice features of discrete time models. They proposed a two-

step conditional choice probability (CCP) estimator for their model, thus connecting

continuous time games with a long line of work on estimation of discrete time dynamic

games. They showed that it is not only feasible to estimate extremely large-scale games,

but also possible to carry out counterfactuals in those games, which would have been

computationally prohibitive in a simultaneous-move, discrete-time model. ABBE illustrated

these advantages in the context of an empirical application which analyzed the entry,

exit, expansion, and contraction of grocery chain stores in urban markets throughout the

United States from 1994–2006 with a particular focus on the effects of Walmart’s entry into
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this sector.

However, the identification results in ABBE did not address identification of the rate of

move arrivals in the model. In the present paper, we treat it as a structural parameter to

identify and further allow it to depend on the state and identity of the player with certain

restrictions. These results are important empirically, to allow for flexibility in the frequency

of decisions in the model as separate from the frequency of observations in the data. As

we show in an empirical illustration using the original data of Rust (1987), allowing the

rate of decisions to vary and estimating it can avoid bias in other structural parameters

such as costs and improve our interpretation of the results.

Like ABBE, this paper builds on the results of Blevins (2017), which addressed identifi-

cation of the reduced forms of continuous-time models using discrete-time data. While

Blevins (2017) considered first-order linear systems of stochastic differential equations, we

apply those results to the specific class of finite-state Markov jump processes generated by

our structural model. As a first step we develop a particular set of linear restrictions for

our model that satisfy the conditions of Theorem 1 of Blevins (2017) in order to identify

the continuous-time reduced form of our model. Beyond this, we also address the question

of identifying the structural primitives of our model.

The ABBE model was developed to make estimation of large-scale models in industrial

organization feasible along with counterfactual simulations using those models. Continu-

ous time models have since been used in many applications including Takahashi (2015) to

movie theaters, Deng and Mela (2018) to TV viewership and advertising, Nevskaya and

Albuquerque (2019) to online games, Agarwal, Ashlagi, Rees, Somaini, and Waldinger

(2021) to allocation of donor kidneys, Jeziorski (2022) to the U.S. radio industry, Schiraldi,

Smith, and Takahashi (2012) to supermarkets in the U.K., Lee, Roberts, and Sweeting (2012)

to baseball tickets, Cosman (2017) to bars in Chicago, Mazur (2017) to the U.S. airline

industry, Kim (2021) to the U.S. retail banking industry, and Qin, Vitorino, and John (2022)

to airline networks in China.

The remainder of this paper is organized as follows. In Section 2, we review a
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generalized version of the ABBE model that permits additional heterogeneity in the form

of player-specific move arrival rates that may vary by player and state. We establish a linear

representation of the value function in terms of CCPs as well as the existence of a Markov

perfect equilibrium in the more general model. We then develop new identification results

for the model in Section 3. We use two canonical examples throughout the paper to

illustrate our results: a single agent renewal model based on Rust (1987) and a 2 × 2 entry

model similar to example models used by Aguirregabiria and Mira (2007), Pesendorfer

and Schmidt-Dengler (2008), and others. Although our running examples are intentionally

quite simple, to better illustrate the main ideas, in Section 4 we introduce a third example:

a quality ladder model of oligopoly dynamics with heterogeneous firms based on the

model of Ericson and Pakes (1995).1 Finally, in Section 5 we examine the computational

and econometric properties via a series of Monte Carlo experiments. Section 6 concludes.

2. A Continuous Time Dynamic Discrete Choice Game with Stochastically

Sequential Moves

We consider infinite horizon discrete games in continuous time indexed by t ∈ [0, ∞)

with N players indexed by i = 1, . . . , N. We introduce a heterogeneous generalization of

the ABBE model, where players may have different discount rates and where the move

arrival rates may differ by player and across states. After formalizing the components of

the structural model, we establish a linear representation of the value function in terms

of conditional choice probabilities, as in ABBE and Pesendorfer and Schmidt-Dengler

(2008), as well as existence of a Markov perfect equilibrium in the more general model. We

conclude the section with a comparison of discrete- and continuous-time models.

1As another example, Blevins and Kim (2024) specify a continuous-time version of the dynamic entry-exit
model of Aguirregabiria and Mira (2007).
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2.1. State Space

At any instant, the payoff-relevant market conditions that are common knowledge to all

players can be summarized by a state vector x, which is a member of a finite state space

X with K ≡ |X| < ∞. Each element x ∈ X represents a possible state of the market and

contains information about the market structure (e.g., which players are active, the quality

of each player) and market conditions (e.g., demographic and geographic characteristics,

input prices). The states x ∈ X are typically represented as L-dimensional vectors of

real numbers in a finite-dimensional Euclidean space RL. The components of x can be

player-specific states, such as the number of stores operated by a retail chain, or exogenous

market characteristics, such as population. For example, x = (x1, . . . , xN , d) where the

components xi are player-specific states, such as incumbency status or the number of stores

operated by a chain, and d is an exogenous market characteristic, such as population or

the level of demand.

Because the state space is finite there is an equivalent encoded state space representation

K = {1, . . . , K}. Although X is the most natural way to interpret the state, using K allows

us to easily vectorize payoffs, value functions, and other quantities.

Renewal Example. As an example, consider a continuous-time version of the single-agent renewal

model of Rust (1987). The agent in the model is the maintenance manager at a municipal bus

company. The manager faces a dynamic decision about when to replace the engine of the bus.

Replacing the engine incurs an immediate cost, but it resets the engine’s mileage, thereby reducing

other maintenance costs and decreasing the likelihood of breakdowns that could disrupt service. We

will explain the model in more detail throughout the paper, and it will form the basis of an empirical

illustration and several Monte Carlo exercises in Section 5, but for now our focus is on the state

space representation. We first discretize the continuous mileage into a finite set of states. Therefore,

there is a single state variable in the model representing the accumulated mileage of the bus engine,

denoted x ∈ {x1, x2, . . . , xK}. In our empirical example, each state xk represents a mileage bin

[5000 × (k − 1), 5000 × k), with K = 90 and therefore a maximum of 450,000 miles. Without loss
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of generality, we can represent the mileage by an integer index k ∈ K = {1, . . . , K}.

2 × 2 Entry Example. As a second example, consider a simple model involving two firms

i ∈ {1, 2} who sell the same good or service, each deciding whether to enter or exit a particular

market. Each firm has two actions denoted j ∈ {0, 1}. The choice j = 1 represents a switching

choice: enter the market if previously inactive, or exit the market if previously active. On the other

hand, the choice j = 0 represents a continuation choice: remain in the market or remain out of the

market. Firms observe their own and each other’s activity status in the market, denoted x1k and

x2k. They also observe an exogenous state variable d representing the level of demand in the market,

which can either be high (H) or low (L) for simplicity.

The model is therefore a two-firm entry game with a binary exogenous state variable. The state

vector xk has three components: x1k, x2k ∈ {0, 1} and dk ∈ {L, H}. Therefore, in vector form the

state space is

X = {(0, 0, L), (1, 0, L), (0, 1, L), (1, 1, L), (0, 0, H), (1, 0, H), (0, 1, H), (1, 1, H)}.

We can also represent each state space in encoded form as

K = {1, 2, 3, 4, 5, 6, 7, 8}.

This representation will be more analytically convenient to characterize the model, which we will

continue to develop as a second running example throughout the paper.

2.2. Exogenous State Changes

The state of the model can evolve over time in response to exogenous events, which we

attribute to an artificial player referred to as “nature,” indexed by i = 0. This player is

responsible for state changes that cannot be attributed to the action of any other player

i > 0 (e.g., changes in population or per capita income). When the model is in state k, let

qkl denote the hazard rate for transitions to another state l ̸= k. The rate qkl may be zero if
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direct transitions from k to l are not possible, or qkl may be some positive but finite value

representing the hazard rate of such a transition. Therefore, the overall rate at which the

system leaves state k for any other state l ̸= k is ∑K
l ̸=k qkl .

Renewal Example (continued). Suppose the exogenous mileage transition process is characterized

by a single rate parameter γ governing mileage increases to the next state. This rate is constant

across states for simplicity, so for all l ̸= k we have

qkl =


γ if l = k + 1

0 otherwise.

2 × 2 Entry Example (continued). In the 2 × 2 entry model, there are two exogenous states:

high demand (d = H) and low demand (d = L). Suppose nature switches from H to L at rate γHL

and back to H at rate γLH. Thus, we have

(1) qkl =


γHL if dk = H and dl = L,

γLH if dk = L and dl = H,

0 otherwise.

2.3. Decisions & Endogenous State Changes

As in discrete time games, the players in our model can take actions that influence the

evolution of the state vector. Each player has J actions represented by the choice set

J = {0, 1, 2, . . . , J − 1}. When the model is in state k, the holding time until the next move

by player i is exponentially distributed with rate parameter λik. In other words, decision

times for player i in state k occur according to a Poisson process with rate λik. We assume

these processes are independent across players and the rates λik are finite for all i and

k, reflecting the fact that monitoring the state and making decisions is costly, making

continuous monitoring (λik = ∞) infeasible.

In ABBE and previous applications of this framework, the rate of decisions was assumed
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to be known by the researcher and to be constant across players and states. For example,

λik = 1 would correspond to a decision on average once per time unit. In this paper, we

consider the rates λik to be structural parameters to be estimated. Additional identifying

restrictions will be required and therefore the specification choice will be important.

Let hijk denote the hazard rate at which player i takes action j in state k where the

overall rate of decisions in state k satisfies ∑J−1
j=0 hijk = λik. The choice-specific hazards

are determined endogenously in the model through the equilibrium dynamic payoff

maximization problems of players, as discussed in detail in the following sections. When

player i chooses action j, the state jumps immediately and deterministically from k to the

continuation state denoted by l(i, j, k).

The assumption of deterministic state changes easily accommodates decisions such

as market entry, price adjustments, or construction of a new store, which are direct and

certain. Our framework can also accommodate stochastic outcomes if both the decision

and outcome are discrete, observable, and encoded in the state vector. The uncertainty of

the outcome can be attributed to “nature” and the rates of state changes that result would

be parameters of the exogenous state transition process discussed in the previous section.2

In most economic models, the actions of players only affect their individual components

of the overall state vector. For example, when a new firm enters a market it may change

the firm-specific activity indicator for that firm but not the level of demand in the market.

As we will discuss in more detail below, this leads to sparsity of the continuous time

model and helps with identification.

Renewal Example (continued). There is a single agent in this model, the manager of a bus

company, so N = 1. As such, we will drop the subscript i from the notation for this example.

Suppose the manager decides whether to replace a bus engine (j = 1) or to continue without

replacing (j = 0). Hence, the choice set is J = {0, 1}. Continuation does not change the state, but

2Consider an example of R&D investment with an uncertain success rate. If the firm’s R&D investment is
an observable choice and encoded in the state vector (say, j ∈ {0, 1} switches the firm’s R&D state xi,r ∈ {0, 1})
and if the success is observable (say, a new product is either developed or not, xi,p ∈ {0, 1}), then our model
allows this by treating the new product development as an uncertain outcome determined by nature, following
the R&D investment, with an estimable rate of success.
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upon replacement the state resets immediately to k = 1. This is described by the continuation state

function

l(j, k) =


k if j = 0,

1 if j = 1.

The agent makes decisions in each state k at times determined by an exogenous Poisson process

with rate parameter λk. This process represents the distribution of times that the manager considers

whether to replace the engine of a bus in mileage state k. In a simple model, we may assume the

decision rate is constant across states: λk = λ. Alternatively, we could allow that the manager

evaluates buses with higher mileage more frequently than those with lower mileage:

λk =


λL if k ≤

⌊K
2

⌋
,

λH otherwise.

In this case, λL is the rate of evaluation of a low-mileage bus (in the lower half of states) and λH is

the rate at which a bus with higher mileage is monitored.

The reduced form hazard rate of engine replacement in state k is h1k. In this case, the rate of

replacement h1k plus the rate of continuation h0k in each state k must be such that h1k + h0k = λk.

Before discussing how the choice-specific hazards are determined optimally, we need to first formalize

the transition dynamics of the state vector and introduce the payoff functions of the players.

Remark. It is important to note that the endogenous hazards of specific actions hjk may

vary across states regardless of whether there is heterogeneity in move arrival rates λk. In

practice one could assume the overall rate of decisions constant across states: λL = λH = λ.

This would imply the rate of (unobservable) non-replacement is h0k = λ − h1k. Even in

this case, where the overall rate of decisions is constant, the rates of replacement and

non-replacement (specific decisions) are endogenous and vary across states. This is similar

to the case of discrete time models, where the sum of conditional choice probabilities is

necessarily constant and equal to one while the individual choice probabilities vary across
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states. The continuous time model allows another degree of flexibility in that the rate of

move arrivals can be different from one. Heterogeneity in λik allows for even more flexible

structures.

2 × 2 Entry Example (continued). In the 2 × 2 entry model, each firm i makes decisions

about entering or exiting the market in each state k at rates λik. We may believe that firms are

heterogeneous, monitoring the market at different rates, but at possibly the same rate across states:

λik = λi. Alternatively, one could specify a model where firms can monitor the market more (or

less) closely when demand is high (d = H) than when demand is low (d = L):

λik =


λL if d = L,

λH otherwise.

These are merely two examples. We will consider other possibilities, including a model where the

move arrival rates depend on the endogenous decisions of the players in Section 4.

2.4. Payoffs

In the continuous time setting, we distinguish between the flow payoffs that a player

receives while the model remains in state k, denoted uik, and the instantaneous choice-

specific payoffs from making choice j in state k at a decision time t, denoted cijk(t). The

instantaneous payoffs are additively separable as cijk(t) = ψijk + ε ijk(t), where ψijk is the

mean payoff and ε ijk(t) is a choice-specific unobserved payoff. Player i observes the vector

ε ik(t) ≡
(
ε ijk(t), j = 0, . . . , J − 1

)
of choice-specific unobservables before choosing action j.

All players and the researcher observe the state k, but only player i observes ε ik(t).

Remark. Note that in discrete time models, because all actions and state changes resolve

simultaneously, the period payoffs are written as functions of the state, the unobservables,

and the actions of all players (e.g., ui(a1, . . . , aN , xt, ε it)). In our continuous-time model, the

payoffs resulting from competition in the product market accrue as flows uik in a specific

state k while the choice-specific payoffs cijk(t) accrue at the instant the decision is made.
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Renewal Example (continued). In the renewal model the agent faces a dynamic, stochastic cost

minimization problem where the flow utility uik is the flow cost of operating a bus with mileage k.

For example, if the cost of mileage is β < 0 then a parametric flow utility function could be

uik = βk.

Upon continuation, no cost is paid but a fixed amount µ < 0 is paid to replace the engine:

ψijk =


0 if j = 0,

µ if j = 1.

Following any choice j, the agent receives an iid shock ε ijk.

2.5. Assumptions

Before turning to the equilibrium, we pause and collect our assumptions so far.

Assumption 1 (Discrete States). The state space is finite: K ≡ |X| < ∞.

Assumption 2 (Discount Rates). The discount rates ρi ∈ (0, ∞), i = 1, . . . , N are known.

Assumption 3 (Move Arrival Times). Move arrival times follow independent Poisson

processes with rate parameters λik for each player i = 1, . . . , N and state k = 1, . . . , K and

qkl for exogenous state changes from each state k to l ̸= k due to nature, with 0 ≤ λik < ∞,

0 ≤ qkl < ∞, and ∑l ̸=k qkl + ∑m λmk > 0.

Assumption 4 (Bounded Payoffs). The flow payoffs and choice-specific payoffs satisfy

|uik| < ∞ and
∣∣ψijk

∣∣ < ∞ for all i = 1, . . . N, j = 0, . . . , J − 1, and k = 1, . . . , K.

Assumption 5 (Additive Separability). The instantaneous payoffs are additively separable

as cijk(t) = ψijk + ε ijk(t).

Assumption 6 (Costless Continuation & Distinct Actions). For all i = 1, . . . , N and k =

1, . . . , K:
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(a) l(i, j, k) = k and ψijk = 0 for j = 0,

(b) l(i, j, k) ̸= l(i, j′, k) for all j = 0, . . . , J − 1 and j′ ̸= j.

Assumption 7 (Private Information). The choice-specific shocks ε ik(t) are iid across players

i, states k, and decision times t. The joint distribution Fik is known, is absolutely continuous

with respect to Lebesgue measure (with joint density fik), has finite first moments, and has

support equal to RJ .

Assumptions 1–7 are generalized counterparts of Assumptions 1–4 of ABBE that allow

for player heterogeneity and state dependent rates.3 Assumptions 1–5 were discussed

above. Assumption 6 formalizes that j = 0 is a costless continuation action and that all

choices are observationally distinct. The first part of Assumption 6 requires that if an

inaction decision which does not change the state, denoted j = 0, is included in the choice

set, then the instantaneous payoff associated with that choice must be zero.4 This is an

identifying assumption. The second part of Assumption 6 requires actions j > 0 to be

meaningfully distinct in the ways they change the state. This serves to rule out cases where

two actions are indistinguishable.

Finally, we formalize a common distributional assumption used in applied work. We

will use this assumption in examples and results throughout the paper for its tractability.

This assumption implies Assumption 7.

Assumption 8 (Type I Extreme Value Distribution). The choice-specific shocks ε ik(t) are

iid across players i, states k, and decision times t and are distributed according to the

standard Type I extreme value distribution. The joint cumulative distribution function is

Fik(ε ik) = ∏J−1
j=0 e− e−εijk .

3Specifically, Assumption 1 is equivalent to Assumption 1 of ABBE, Assumptions 2 and 3 generalize
Assumptions 2(a) and 2(b–c) of ABBE, Assumption 4 is equivalent to Assumptions 2(d–e) of ABBE, and
Assumptions 5–6 are equivalent to Assumptions 3–4 of ABBE, and Assumption 7 generalizes Assumption 5 of
ABBE.

4The role of the choice j = 0 is similar to the role of the “outside good” in models of demand. Because not
all agents in the market are observed to purchase one of the goods in the model, their purchase is defined to
be the outside good.
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2.6. Strategies and Best Responses

A stationary Markov policy for player i is a function δi : K × RJ → J : (k, ε ik) 7→ δi(k, ε ik)

which assigns to each state k and vector ε ik an action from J. Associated with each policy

δi are conditional choice probabilities

(2) Pr[δi(k, ε ik) = j | k]

for all choices j and states k. Since firm i’s payoffs do not depend on the rival choice-

specific errors εmjk for other players m directly, but only through the choices of those

agents, it will be sufficient to consider the beliefs about rival actions in terms of conditional

choice probabilities. Let ςim denote player i’s beliefs regarding the actions of rival player

m, given by a collection of J × K probabilities for each state k and choice j. Then we let

ςi = (ςi1, . . . , ςi,i−1, ςi,i+1, . . . ςiN) denote player i’s beliefs about all other players. Finally,

let Vik(ςi) denote the expected present value for player i being in state k and behaving

optimally now and in the future while all rivals follow strategies consistent with the beliefs

ςi. The best response strategy for player i is

(3) bi(k, ε ik, ςi) = arg max
j∈J

{
ψijk + ε ijk + Vi,l(i,j,k)(ςi)

}
.

That is, at each decision time the best response function bi assigns the action that maximizes

the agent’s expected payoff. The quantities on the right side are the instantaneous payoff

ψijk + ε ijk associated with choice j plus the present discounted value of payoffs that occur

in the continuation state l(i, j, k) arising when player i chooses action j in state k.

Remark. Given the discrete nature of choices, the best response condition in (3) amounts to

a threshold-crossing model with an additively separable error term. Under Assumption 8

the implied best response probabilities have a familiar logistic functional form in terms of
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the value function.

(4) Pr [bi(k, ε ik, ςi) = j | k] =
exp

(
ψijk + Vi,l(i,j,k)(ςi)

)
∑j′∈J exp

(
ψij′k + Vi,l(i,j′,k)(ςi)

) .

2.7. Value Function

Given beliefs ςi held by player i, we can define the value function (here, a K-vector)

Vi(ςi) = (Vi1(ςi), . . . , ViK(ςi))
⊤ where the k-th element Vik(ςi) is the present discounted

value of all future payoffs obtained when starting in some state k and behaving optimally

in future periods given beliefs ςi. For a small time increment τ, under Assumption 3 the

probability of an event with rate λik occurring is λikτ. Given the discount rate ρi, the

discount factor for such increments is 1/(1 + ρiτ). Thus, for small time increments τ the

present discounted value of being in state k is

Vik(ςi) =
1

1 + ρiτ

[
uikτ + ∑

l ̸=k
qklτVil(ςi) + ∑

m ̸=i
λmkτ

J−1

∑
j=0

ςimjkVi,l(m,j,k)(ςi)

+λikτ E max
j

{
ψjk + ε ijk + Vi,l(i,j,k)(ςi)

}
+

(
1 −

N

∑
i=1

λikτ − ∑
l ̸=k

qklτ

)
Vik(ςi) + o(τ)

]
.

The o(τ) term accounts for the probabilities of two or more Poisson events occurring

during the small interval τ, which are proportional to τ2 or smaller. Such probabilities

become negligible as τ approaches zero, and thus can be ignored in the limit. Rearranging

and letting τ → 0, we obtain the following recursive expression for Vik(ςi):

(5) Vik(ςi) =
1

ρi + ∑l ̸=k qkl + ∑m λmk
×
[

uik + ∑
l ̸=k

qklVil(ςi)+

∑
m ̸=i

λmk ∑
j

ςimjkVi,l(m,j,k)(ςi) + λik E max
j

{ψijk + ε ijk + Vi,l(i,j,k)(ςi)}
]

The denominator contains the sum of the discount factor and the rates of all events that

might possibly change the state. The numerator is composed of the flow payoff for being
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in state k, the rate-weighted values associated with exogenous state changes, the rate-

weighted values associated with states that occur after moves by rival players, and the

expected current and future value obtained when a move arrival for player i occurs in state

k. The expectation is taken with respect to the joint distribution of ε ik = (ε i0k, . . . , ε i,J−1,k)
⊤.

Remark. Note that the E max term in (5) can be written in the usual “log-sum-exp” form

when the errors satisfy Assumption 8:

E max
j

{ψijk + ε ijk + Vi,l(i,j,k)(ςi)} = ln ∑
j

exp
(

ψijk + Vi,l(i,j,k)(ςi)
)

.

Renewal Example (continued). In the renewal model, the value function can be expressed very

simply as follows (where the i subscript and beliefs have been omitted since N = 1):

Vk =
1

ρ + γ + λ
(uk + γVk+1 + λk E max {ε0k + Vk,−c + ε1k + V1}) .

2 × 2 Entry Example (continued). In the 2 × 2 entry model, the value function for player 1

in state k, where xk = (xk1, xk2, dk) ∈ {0, 1} × {0, 1} × {L, H}, can be expressed recursively as

(omitting beliefs ς1 for brevity)

V1k =
1

ρ1 + 1{dk = L}γLH + 1{dk = H}γHL + λ1k + λ2k

×
(

u1k + 1{dk = L}γLHV1,l(0,H,k) + 1{dk = H}γHLV1,l(0,L,k) + λ2kς120kVi,k

+λ2kς121kVi,l(2,1−xk2,k) + λ1k E max
{

ε i0k + Vi,k, ψi1k + ε i1k + Vi,l(1,1−xk1,k)

})
,

where l(0, H, k) and l(0, L, k) are the continuation states when nature switches the level of demand

to H and L, respectively, when in state k. ς12jk is firm 1’s belief about firm 2 choosing j.

2.8. Markov Perfect Equilibrium

Following the literature, we focus on Markov perfect equilibria.

Definition. A Markov perfect equilibrium is a collection of stationary Markov policy rules
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{δ∗i }N
i=1 such that for each player i and for all (k, ε ik), δ∗i (k, ε ik) = bi(k, ε ik, ςi) and ςim =

Pr [δ∗m(k, ε ik) | k] for all m ̸= i.

The definition requires that for each player i, δ∗i is a best response in all states given the

beliefs ςi and that these beliefs are consistent with the strategies δ∗m for each rival player m.

Following Milgrom and Weber (1985) and Aguirregabiria and Mira (2007), we will

characterize Markov perfect equilibria in terms of the associated equilibrium conditional

choice probabilities

(6) σijk = Pr [δ∗i (k, ε ik) | k] .

Henceforth, we will denote equilibrium choice probabilities and corresponding beliefs by

σijk. Thus, σ = (σ1, . . . , σN) will denote a profile of equilibrium choice probabilities and

σ−i will denote the collection of rival choice probabilities that constitute player i’s beliefs.

ABBE proved that such an equilibrium exists when players share common move arrival

and discount rates and when the move arrival rates do not vary across states (i.e., λik = λ

and ρi = ρ for all i and k). The following theorem extends this to the more general model

with heterogeneity.

Theorem 1. If Assumptions 1–7 hold, then a Markov perfect equilibrium exists.

Proof. See Appendix A.

2.9. Linear Representation of the Value Function

It will be convenient to express the Bellman equation in (5) in matrix notation. Before

proceeding, we revisit one of the central results of ABBE (Proposition 2), which is a

continuous-time analog of a similar result of Hotz and Miller (1993, Proposition 1) for

discrete-time models. Restated below as Lemma 1, ABBE showed that differences in

choice-specific value functions—that is, [ψijk + Vi,l(i,j,k)(σ)]− [ψij′k + Vi,l(i,j′,k)(σ)] for two

choices j and j′—are identified directly as functions of the conditional choice probabilities

σi.
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Lemma 1 (ABBE, 2016, Proposition 2). Under Assumptions 1–7, for each player i = 1, . . . , N,

each state k = 1, . . . , K, and each choice j ∈ J the choice-specific value function is identified, up

to differences with respect to some baseline choice j′ ∈ J, as a function of the conditional choice

probabilities:

(7) ψijk + Vi,l(i,j,k)(σ) = ψij′k + Vi,l(i,j′,k)(σ) + Φ(j, j′, σik).

This result will prove useful for vectorizing the value function, after defining some

additional notation. Let Σm(σm) denote the transition matrix implied by the conditional

choice probabilities σm and the continuation state function l(m, ·, ·). That is, the (k, l)

element of the matrix Σm(σim) is the probability of transitioning from state k to state l as

a result of an action by player m under the beliefs of player i. Let Q0 = (qkl) denote the

intensity matrix for exogenous state transitions and let Q̃0 = Q0 − diag(q11, . . . , qKK) be

the matrix formed by taking Q0 and setting the diagonal elements to zero.

With this notation and Lemma 1 in hand, following (5), for given equilibrium choice

probabilities σ we define the operator Γσ
i as

(8) Γσ
i (Vi) = Di

[
ui + Q̃0Vi + ∑

m ̸=i
LmΣm(σm)Vi + Li {Σi(σi)Vi + Ci(σi)}

]
,

where Di is the K × K diagonal matrix containing the coefficient from (5) for each k, hence

(Di)kk = 1/(ρi + ∑l ̸=k qkl + ∑N
m=1 λmk), Lm = diag(λm1, . . . , λmK) is a diagonal matrix

containing the move arrival rates for player m, Ci(σi) is the K × 1 vector containing

the ex-ante expected value of the instantaneous payoff cijk = ψijk + ε ijk for player i in

each state k given the best response probabilities σi. That is, k-th element of Ci(σi) is

∑J−1
j=0 σijk

[
ψijk + eijk(σi)

]
, where eijk(σi) is the expected value of ε ijk given that action j is

chosen:

eijk(σi) ≡
1

σijk

∫
ε ijk · 1

{
ε ij′k − ε ijk ≤ ψijk − ψij′k + Vi,l(i,j,k)(σ)− Vi,l(i,j′,k)(σ) ∀j′

}
f (ε ik) dε ik.
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By Lemma 1, the choice-specific value differences on the right-hand side are in turn func-

tions of player i’s conditional choice probabilities σi. Hence, holding fixed the equilibrium

beliefs σ, the value function is a fixed point of Γσ
i : Vi = Γσ

i (Vi).

Remark. Although the expression for eijk(σi) involves a multivariate integral over the joint

distribution of ε ik, fortunately Aguirregabiria and Mira (2002, 2007) demonstrated that it

has a closed form in terms of choice probabilities in two leading cases. For the case of

Assumption 8, we have

eijk(σi) = γEM − ln σijk,

where γEM is the Euler-Mascheroni constant (γEM ≈ 0.5772). For the case with J = 2

choices and ε ik ∼ N(0, Ω), Aguirregabiria and Mira (2007) showed5

eijk(σi) =
Var(ε ijk)− Cov(ε i0k, ε i1k)√

Var(ε i1k − ε i0k)

φ
(
Φ−1(σijk)

)
σijk

,

where Φ and φ denote, respectively, the standard normal cdf and pdf.

Collecting terms involving Vi in (8) and solving leads to a linear representation of the

value function in terms of conditional choice probabilities, rate parameters, and payoffs

as formalized in the following Theorem. This representation generalizes Proposition 6 of

ABBE and forms the basis of the identification result in Section 3.3. It is analogous to a

similar result for discrete time games by Pesendorfer and Schmidt-Dengler (2008, eq. 6).

Theorem 2. If Assumptions 1–7 hold, then for a given collection of equilibrium choice probabilities

σ, Vi has the following linear representation for each i:

(9) Vi(σ) = Ξ−1
i (σ) [ui + LiCi(σi)]

5See their equation 13 and footnote 7 for details.
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where

(10) Ξi(σ) = ρi IK +
N

∑
m=1

Lm[IK − Σm(σm)]− Q0

is a nonsingular K × K matrix and IK is the K × K identity matrix.

Proof. See Appendix A.

2.10. Continuous Time Markov Jump Processes Representation

The reduced form of the model we consider is a finite state Markov jump process, a

stochastic process X(t) indexed by t ∈ [0, ∞) taking values in a finite state space X =

{1, . . . , K}. If we begin observing this process at some arbitrary time t and state X(t), it

will remain in this state for a duration of random length τ before transitioning to some

other state X(t + τ). The length of time τ is referred to as the holding time. A trajectory or

sample path of such a process is a piecewise-constant, right-continuous function of time.

Jumps occur according to a Poisson process and the holding times between jumps are

therefore exponentially distributed. For a review of the fundamental properties of Markov

jump processes, see Karlin and Taylor (1975, Section 4.8) or Chung (1967, part II).

A finite Markov jump process can be summarized by its intensity matrix or infinitesimal

generator matrix. Consider the intensity matrix for nature,

Q0 =



q11 q12 . . . q1K

q21 q22 . . . q2K
...

...
...

...

qK1 qK2 . . . qKK


where for k ̸= l

qkl = lim
h→0

Pr [X(t + h) = l | X(t) = k]
h
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is the probability per unit of time that the system transitions from state k to state l and the

diagonal elements are qkk = −∑l ̸=k qkl so that the row sums equal zero. The holding times

before transitions out of state k follow an exponential distribution with rate parameter

−qkk, which is the sum of the off-diagonal transition rates. Conditional on leaving state k,

the system transitions to state l ̸= k with probability qkl/ ∑l ̸=k qkl = −qkl/qkk.

In the case of discrete time data, the times at which actions and state changes occur are

not observed by the econometrician. With equispaced data (e.g., annual or quarterly) only

the states at the beginning and end of each period of length ∆ are observed. Although

we cannot know the exact sequence of actions and state changes, the model allows us

to determine the likelihood of any particular transition occurring over a time interval of

length ∆ using the transition matrix, which we will denote as P(∆).

Let Pkl(∆) = Pr [X(t + ∆) = l | X(t) = k] denote the probability that the system is in

state l after a period of length ∆ given that it was initially in state k. The transition matrix

P(∆) = (Pkl(∆)) is the corresponding K × K matrix of these probabilities and is given by

the matrix exponential of the intensity matrix Q scaled by the time interval ∆:

(11) P(∆) = exp(∆Q) =
∞

∑
j=0

(∆Q)j

j!
.

This is the matrix analog of the scalar exponential exp(x) for x ∈ R.6

We can think of these N + 1 processes as first branching at the player level and then

branching again at the action level: conditional on a particular player moving, which action

is chosen? Player i plays each action j in state k at rate hijk = λikσijk. Since the probabilities

σijk sum to one, we have ∑J−1
j=0 hijk = λik. Therefore, conditional on player i moving the

probability that action j is chosen is hijk/λik.

Now, in the context of the dynamic games we consider, the state space dynamics can

be fully characterized by a collection of N + 1 competing Markov jump processes with

6Although we cannot calculate the infinite sum (11) exactly, we can compute exp(∆Q) numerically using
known algorithms implemented, for example, in the Fortran package Expokit (Sidje, 1998) or the expm
command in Matlab. See Sherlock (2022) for a recent discussion of the uniformization method.
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intensity matrices Q0, Q1, . . . , QN . Each process corresponds to some player i, and the

aggregate intensity matrix is defined as Q ≡ Q0 + Q1 + · · ·+ QN .

Renewal Example (continued). Consider the Q matrix implied by the continuous-time single-

agent renewal model. The state variable in the model is the total accumulated mileage of a bus

engine, K = {1, . . . , K}. The exogenous state transition process is characterized by a K × K

intensity matrix Q0 on K with one parameter, γ, governing the rate of mileage increases:

Q0 =



−γ γ 0 0 · · · 0

0 −γ γ 0 · · · 0
...

...
. . .

...
...

...

0 0 . . . −γ γ 0

0 0 . . . 0 −γ γ

0 0 . . . 0 0 0


.

Let σ1k denote the probability of replacement in state k. The intensity matrix for state changes

induced by the agent is

Q1 =



0 0 0 · · · 0 0

λLσ12 −λLσ12 0 · · · 0 0

λLσ13 0 −λLσ13 · · · 0 0
...

...
...

. . .
...

...

λHσ1,K−1 0 0 · · · −λHσ1,K−1 0

λHσ1K 0 0 · · · 0 −λHσ1K


.
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X(t)

i = 0

at1 = 0

i = 1
τ11

τ02 τ03

τ14

τ05

t2 t3 t5t4t1 t

at4 = 1

Figure 1. Single agent model: a representative sample path where tn, τin, and an denote,
respectively, the time, inter-arrival time, and action corresponding to n-th event. Moves by
the agent are denoted by i = 1 while i = 0 denotes a state change (a move by nature).

The aggregate intensity matrix in this case is Q = Q0 + Q1:

(12) Q =



−γ γ 0 · · · 0 0

λLσ12 −λLσ12 − γ γ · · · 0 0

λLσ13 0 −λLσ13 − γ · · · 0 0
...

...
...

. . .
...

...

λHσ1,K−1 0 0 · · · −λHσ1,K−1 − γ γ

λHσ1K 0 0 · · · 0 −λHσ1K


.

A representative sample path generated by this model is shown in Figure 1. Holding times

are indicated by τin, where i denotes the identity of the player (with i = 0 denoting nature) and

n denotes the event number. The agent’s decisions (atn ) are indicated at each decision time. For

example, at time t1, the agent chooses to continue without replacement (at1 = 0), while at time t4,

the agent chooses to replace (at4 = 1), resetting the mileage.

2 × 2 Entry Example (continued). Let hik be the hazard of player i switching from active to

inactive or vice versa in state k. We have dropped the j subscript here for notational simplicity
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Low Demand

High Demand

h11

h26

h12

γLH h27

γHLh22

h16

h24

h13

h18

h14

h15

h23h21

h28

h17

h25

(1, 0, H)

(1, 1, H)(0, 1, H)

(0, 0, H)

(1, 0, L)

(1, 1, L)(0, 1, L)

(0, 0, L)

There are two demand states, L and H, two firms, and two choices (j = 0 continue, j = 1 switch). The reduced
form hazards hik here denote the rates of switching (j = 1). Recall that they are related to the structural

quantities as hik = λikσi1k.

Figure 2. Two Player Entry Game with Exogenous Demand State

since j = 0 does not change the state. Let γLH and γHL be the rates at which nature switches

between demand states (i.e., demand moves from low to high at rate γLH). The aggregate state space

dynamics are illustrated in Figure 2. Recall that the reduced form hazards hik of firm i taking action

j = 1 in state k are related to the structural quantities through the relation hik = λikσijk.

The state transition hazards can be characterized by an 8 × 8 intensity matrix Q. Note that

firms cannot change the demand state, firms cannot change each other’s states, and nature cannot

change the firms’ states. Therefore, the overall intensity matrix is a block matrix of the form

Q =

QLL QLH

QHL QHH

 =

QL
1 + QL

2 QL
0

QH
0 QH

1 + QH
2


The low demand state L corresponds to encoded states k = 1, . . . , 4. In this portion of the state
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space, firms change the state as follows:

QL
1 =



−h11 h11 0 0

h12 −h12 0 0

0 0 −h13 h13

0 0 h14 −h14


, QL

2 =



−h21 0 h21 0

0 −h22 0 h22

h23 0 −h23 0

0 h24 0 −h24


Importantly, the locations of the nonzero off-diagonal elements are distinct because the state-to-

state communication patterns differ. A similar structure arises for the high demand state H, for

k = 5, 6, 7, 8. Therefore, given Q we can immediately determine Q0, Q1, and Q2. The full Q matrix

is stated below in (13) in Section 3.

2.11. Comparison with Discrete Time Models

We conclude this section with a few brief remarks on continuous time and discrete time

models. First, consider a typical discrete time model in which agents make decisions in

unison and where the period between decisions is calibrated to be equal to the sampling

period of the data, say one year. In an entry/exit setting where the choice set is J = {0, 1},

this implies that there must be exactly one entry or exit per year. For example, entering and

leaving within one year is not permitted. In the discretely sampled data, passive actions

such as remaining in or out of the market are coded as active decisions (e.g., a choice to

not enter or a choice to remain in the market), but in reality they typically represent the

absence of an active choice (entry or exit) during the period. Now consider a chain store

setting where the choice is the net number of stores to open during the year, the choice set

is J = {−J, . . . , J}. This implies that there can be at most J openings or closings per year.

Hence, J must be chosen by the researcher to be the maximum number of possible stores

opened or closed by any chain firm in any period.

Now, consider a continuous time model with a common move arrival rate λ for all

players and all states. In the entry/exit setting, the choice set is still J = {0, 1} which

implies that there are on average 1/λ entries or exits per year. Multiple entries and exits are
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allowed and the model parameters imply a distribution over the number and type of such

events. The choice set represents the set of possible instantaneous state changes, so in the

chain store expansion example, if we assume that no more than one store is ever opened

or closed simultaneously, then we would specify J = {−1, 0, 1}. This would imply that

on average there are at most 1/λ openings or closings per year. In our continuous time

model the rate λ is a free parameter that can adjust to match the data, thus not imposing

an ad hoc restriction on the number of actions per unit of time. In other words, the

time-aggregated implications of the continuous time model are not functionally different

if we change the time period and unrelated to the sampling period of the data.

3. Identification Analysis

Due to the time aggregation problem, our identification analysis separates the data

issue—that we may only observe P(∆) instead of Q—from the usual identification step of

recovering the structural parameter θ from the continuous-time reduced form Q. Therefore,

we proceed in two steps and researchers with continuous time data can begin with the

second step.7 Deriving the implications of the structural model can be viewed as a bottom-

up exercise: the structural primitives u and ψ imply value functions V which imply choice

probabilities σ. These probabilities along with the rates of moves, λ, and state transitions

by nature, Q0, in turn imply an intensity matrix Q. Finally, given the Q matrix and a

process for sampling data, this implies a data generating process. For example, for a fixed

sampling interval ∆ the distribution of observable data is P(∆) = exp(∆Q).

On the other hand, the identification problem requires us to consider the inverse

problem, working from the top down. These steps are represented in Figure 3. If the

complete continuous time record is potentially observable, then Q is trivially identified

and we can move to identification of the structural model. However, in the case of discrete
7We note that although we take a sequential approach to identification in this paper, a direct approach

from P(∆) to θ may also be possible. We also note that identification and estimation are distinct concepts.
The steps in our identification approach do not directly correspond to those in two-step estimation methods.
However, the second step of our identification approach does draw on concepts similar to those used in
two-step estimation of games.
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P(∆) 7→ Q 7→ {Qi, hi} 7→ {λi, σi, Vi, ψi, ui} 7→ θ

Equispaced DT data CT reduced form CT structural primitives

Figure 3. Identification Analysis

time data we must first use our knowledge of the data generating process, represented

by the transition matrix P(∆) for an interval ∆, to derive conditions under which we can

uniquely determine the reduced form intensity matrix Q. We will show that this is possible

under mild conditions by exploiting the restrictions that the structural model places on

the Q matrix.

Second, with Q in hand we turn to identification of the structural primitives of the

model, namely the flow payoffs u and instantaneous payoffs ψ. We show that knowledge

of Q allows us to recover these structural primitives with a smaller number of additional

identifying restrictions than are required in discrete time models. This is due to the absence

of simultaneous moves at any given instant, which is also the source of the computational

efficiency of the model.

3.1. Identification of Q

With continuous-time data, identification and estimation of the intensity matrix for finite-

state Markov jump processes is straightforward and well-established (Billingsley, 1961).

However, when a continuous-time process is only sampled at discrete points in time, the

parameters of the underlying continuous-time model may not be point identified.8 In the

present model, the concern is that there may be multiple Q matrices which give rise to the

same data generating process, which is the potentially observable transition probability

matrix P(∆) in the leading case of fixed sampling intervals.9

8This is known as the aliasing problem and it has been studied extensively in the context of continuous-time
systems of stochastic differential equations (Sims, 1971; Phillips, 1973; Hansen and Sargent, 1983, 1991; Geweke,
1978; Kessler and Rahbek, 2004; McCrorie, 2003; Blevins, 2017). See Figure 1 of Blevins (2017) for an illustration
in the frequency domain, where the problem is perhaps most obvious.

9A related issue is the embeddability problem: could the transition matrix P(∆) have been generated by a
continuous-time Markov jump process for some intensity matrix Q or some discrete-time chain over fixed
time periods of length δ? This problem was first proposed by Elfving (1937). Kingman (1962) derived the set
of embeddable processes with K = 2 and Johansen (1974) gave an explicit description of the set for K = 3.
Singer and Spilerman (1976) summarize several known necessary conditions for embeddability involving
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X(t)

t1 t2t2 − ∆ t

τ1 ∆

Figure 4. Time aggregation: Two distinct paths which end in the same state at t2 and
begin in the same state at t2 − ∆ and but differ over intermediate interval of length ∆.

In discrete time settings, there is a similar identification problem that is masked when

assuming the unknown frequency of moves is equal to the (known) sampling frequency

(Hong, Li, and Wang, 2015). To see this, suppose agents move at intervals of length δ with

transition matrix P0 while the data sampling interval is ∆ > δ. Then the mapping between

the data (equispaced observations at length ∆) and the transition matrix is: P(∆) = P∆/δ
0 .

In general, there are multiple solutions to this equation (Gantmacher, 1959; Singer and

Spilerman, 1976), meaning that identification of P0 is non-trivial.

To illustrate this issue in the continuous time setting, Figure 4 displays two distinct

paths which coincide both before and after an interval of length ∆, but which take different

intermediate steps. Consider the possible paths of the process between times t2 − ∆ and

t2. The dashed path first moves to a higher state before arriving at the resulting state kt2 ,

while the dotted path first moves to a lower state and arrives in kt2 at a later time (but

before t2). There are an infinite number of such paths, but the dynamics of the process

over the interval are summarized by the transition matrix P(∆).

Much of the previous work on this identification problem seeks conditions on the

testable conditions on the determinant and eigenvalues of P(∆). We assume throughout that the continuous
time model is well-specified and that such an intensity matrix exists.
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observable discrete-time transition matrix P(∆). We briefly review some of these results

in the next subsection, but our approach is to show that one can instead identify Q via

identifying restrictions on the primitives of the underlying structural model and that such

restrictions easily arise from the statement of the model itself. These can be viewed as

exclusion restrictions.

For example, in applications there are typically player-specific components of the state

vector where player i is not permitted to change the players-specific state of player j and

vice-versa. In an entry-exit model, such a state is incumbency status: players can enter

and exit by their own action, but no player can enter or exit on behalf of another player.

Similarly, if the overall state vector has components that are exogenous state variables,

such as population, then we know that any state changes involving those variables must

be due to nature and not by an action of any other player. This natural structure implies

many linear restrictions on the Q matrix. We show that restrictions of this form limit the

domain of the mapping Q 7→ exp(∆Q) = P(∆) in such a way as to guarantee the intensity

matrix Q is identified.

3.1.1. Identification of Unrestricted Q Matrices

Returning to the general problem of identification of Q, recall that the question is whether

there exists a unique matrix Q that leads to the observed transition matrix P(∆) = exp(∆Q)

when the process is sampled at uniform intervals of length ∆. The matrix logarithm ln P(∆)

is not unique in general (see Gantmacher, 1959; Singer and Spilerman, 1976), so the question

amounts to finding suitable conditions under which there is a unique solution.

Previous mathematical treatments have tended to view the relationship exp(∆Q) =

P(∆) from the perspective of the transition matrix P(∆). In such cases there is not

an underlying model that generates Q, so Q is the model primitive of interest and is

unrestricted (aside from requirement that it must be a valid intensity matrix). As a result,

most previous work on the aliasing problem focused on finding sufficient conditions

on the matrix P(∆) (rather than Q) to guarantee that ln P(∆) is unique. For example,
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if the eigenvalues of P(∆) are distinct, real, and positive, then Q is identified (Culver,

1966). More generally, Culver (1966) proved that Q is identified if the eigenvalues of

P(∆) are positive and no elementary divisor (Jordan block) of P(∆) belonging to any

eigenvalue appears more than once. Other sufficient conditions for identification of Q

include mink{Pkk(∆)} > 1/2 (Cuthbert, 1972) and det P(∆) > e−π (Cuthbert, 1973). See

Singer and Spilerman (1976) for a summary of these results and others.

Other sufficient conditions for identification of Q involve alternative sampling schemes.

For example, Q can always be identified for some sufficiently small sampling interval ∆

(Cuthbert, 1973; Singer and Spilerman, 1976; Hansen and Sargent, 1983). A useful result

for experimental studies is that Q is identified if the process is sampled at two distinct

intervals ∆1 and ∆2 where ∆2 ̸= k∆1 for any integer k (Singer and Spilerman, 1976, 5.1).

The first type of conditions—restrictions on P(∆)—are based on a “top down” approach

and are undesirable in cases where Q is generated by an underlying model. The second

type of conditions are based on changing how the continuous time process is sampled,

which is not possible to change if the data have already been collected at regular intervals.

Instead, we take a “bottom up” approach which allows economic theory to inform our

identification conditions via restrictions on Q that guarantee uniqueness of ln P(∆). For

applied economists, more compelling conditions are likely to involve cross-row and cross-

column restrictions on the Q matrix and the locations of known zeros of the Q matrix. As

we discuss below, such restrictions arise naturally once the collection of players, actions,

and the resulting state transitions are defined.

3.1.2. Structural Restrictions for Identification of Q

The problem of identifying continuous time models with only discrete time data has

also appeared previously in the econometrics literature, in work by Phillips (1973) on

continuous time regression models. He considered multivariate, continuous-time, time-

homogeneous regression models of the form y′(t) = Ay(t) + ξ(t), where y(t) is an n × 1

vector and A is an n × n structural matrix. He discusses the role of prior information on
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the matrix A and how it can lead to identification. He showed that A is identified given

only discrete time observations on y if A satisfies certain rank conditions.

Our proposed identification strategy is inspired by this work on multivariate regression

models, but our model is different because the Q matrix is known to be an intensity matrix

(rather than an arbitrary matrix of regression coefficients) and has a rather sparse structure

which is dictated by an underlying structural model. Yet, there are a number of similarities:

the present model can also be characterized by a system of differential equations, where

the intensity matrix Q plays a role similar to the matrix A above. If Q is an valid intensity

matrix, then the functions P(∆) which solve this system are the transition matrices of

continuous-time stationary Markov chains (Chung, 1967, p. 251–257).

The structural model restricts Q to a lower-dimensional subspace since it is sparse and

must satisfy both within-row and across-row restrictions, and given the results above it

seems likely that these restrictions could lead to identification of Q. That is, even if there

are multiple matrix solutions to the equation P(∆) = exp(∆Q), it is unlikely that two of

them simultaneously satisfy the restrictions of the structural model. We return to the two

examples introduced previously to illustrate this idea.

Renewal Example (continued). In the single-agent renewal model the aggregate intensity matrix

is given in (12) of Section 2. The number of nonzero hazards in this matrix is substantially less

than the total number. Consider the case where K = 90, there are 902 − 90 = 8, 010 non-trivial

state-to-state transitions. However, only 178 are permitted at any instant: 89 due to nature and

89 by action of the player. The remaining 7,832 transitions are not possible in a single event.

Nature cannot decrease mileage and can only increase it by one state at a given instant (although

multiple state jumps are possible over an interval of time). The agent can only reset mileage to the

initial state. This results in nine known zeros of the aggregate Q matrix. As we show below, these

restrictions are sufficient to identify Q. Note that given Q, we can separately determine both Q0

and Q1. Additionally, the choice-specific hazards h1k are the products of the overall move arrival

rates and the conditional choice probabilities, which introduces shape restrictions on h1k = λkσ1k

across states k.

32



2 × 2 Entry Example (continued). In the 2 × 2 × 2 entry example, the aggregate intensity

matrix is Q = Q0 + Q1 + Q2:

(13) Q =



· h11 h21 0 γL 0 0 0

h12 · 0 h22 0 γL 0 0

h23 0 · h13 0 0 γL 0

0 h24 h14 · 0 0 0 γL

γH 0 0 0 · h15 h25 0

0 γH 0 0 h16 · 0 h26

0 0 γH 0 h27 0 · h17

0 0 0 γH 0 h28 h18 ·



,

where the diagonal elements have been omitted for simplicity. Some transitions cannot happen at

all, such as (0, 1, L) to (1, 0, L). The remaining transitions can happen only due to the action of

one of the firms, but not the other. For example, moving from (0, 0, H) to (1, 0, H) is only possible

if firm 1 chooses to become active. From any state, the set of other states to which either firm can

move the state as a result of an action is limited naturally by the model and the definition of the

state space. This structure yields intensity matrices that are sparse, which makes identification of Q

more likely even with time aggregation since any observationally equivalent Q matrix must have

the same sparsity pattern. Finally, given Q we can again separately recover Q0, Q1, and Q2.

Similar sparse structures arise in even models with large numbers of players and

millions of states, as in the application of ABBE. In light of this lower-dimensional structure,

we build on the results of Blevins (2017) who gave sufficient conditions for identification

in first-order linear systems of stochastic differential equations. We apply those results to

the case of finite-state Markov jump processes generated by our structural model. In this

case we will make use of structural restrictions on the matrix Q of the general linear form

R vec(Q) = r. For the K × K matrix Q = (qkl), vec(Q) is the vector obtained by stacking

the columns of Q: vec(Q) = (q11, q21, . . . , qK1, . . . , q1K, . . . , qKK)
⊤.

These restrictions will serve to rule out alternative Q matrices. Gantmacher (1959)
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showed that all solutions Q̃ to exp(∆Q̃) = P(∆) have the form

Q̃ = Q + UDU−1

where U is a matrix whose columns are the eigenvectors of Q and D is a diagonal matrix

containing differences in the complex eigenvalues of Q and Q̃. This means that both the

eigenvectors U and the real eigenvalues of Q are identified. Any other such matrices Q̃

must also satisfy the prior restrictions, so R vec(Q̃) = r. By the relationship between Q

and Q̃ above, we also have R vec(Q + UDU−1) = r. But R vec(Q) = r and by linearity of

the vectorization operator, R vec(UDU−1) = 0. An equivalent representation is

R(U−⊤ ⊗ U) vec(D) = 0.

Here, adapting Theorem 1 of Blevins (2017) to the special case of finite-state Markov

jump processes, when there are at least
⌊K−1

2

⌋
linear restrictions and R has full rank, then

D must be generically zero and therefore the eigenvalues of Q̃ and Q are equal. If the

eigenvectors and all eigenvalues of Q̃ are the same as those of Q, the matrices must be

equal and therefore Q is identified.

The following theorem establishes that there are sufficiently many full rank restrictions

to identify Q in a broad class of games. This theorem includes exogenous market-specific

state variables and shows that such states increase the number of zero restrictions and

make identification of Q more likely, as do player-specific state variables.10

Theorem 3 (Identification of Q). Suppose the state vector is x = (x0, x1, . . . , xN) ∈ X0 ×X1 ×

· · · ×XN where the component x0 ∈ X0 is an exogenous market characteristic taking |X0| = K0

values and for each i = 1, . . . , N the component xi is a player-specific state affected only by the

action of each player with |Xi| = K1 possible distinct values. If Q has distinct eigenvalues that do

10It is important to note that having player-specific state variables in the game does not imply symmetry,
which refers to the structure of payoffs. In the quality ladder model discussed in Section 4, players are
symmetric and anonymous, but they possess player-specific state variables representing their current quality
level.
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not differ by an integer multiple of 2πi/∆, then Q is identified when

(14) K0KN
1 − K0 − NJ +

1
2
≥ 0.

The quantity on the left is strictly increasing in K1, strictly increasing in K0 when K1 > 1, and

strictly decreasing in J.

Proof. See Appendix A.

The sparsity of Q helps and is increasing in both the number of exogenous states K0

and player-specific states K1, but decreasing in the number of choices J. Therefore, for

identification we need either a sufficiently large number of states or a sufficiently small

number of choices. Fortunately, in most applications J is small relative to K—particularly

in continuous time models as discussed in Section 2.11.

2 × 2 Entry Example. Our running entry model example is a binary choice game with N = 2,

J = 2, K0 = 2, and K1 = 2, so by Theorem 3 Q is identified.

Furthermore, we can see that any binary choice game (N > 1 with J = 2) with

meaningful player-specific states (K1 > 1) is identified, regardless of the number of

players or exogenous market states K0. The sufficient condition in this case simplifies to

K0(KN
1 − 1) ≥ N − 1

2 . When K0 ≥ 1 and K1 ≥ 2 we have K0(KN
1 − 1) ≥ 2N − 1 which

exceeds N − 1
2 for integers N > 1.

3.1.3. Identification of Qi

Once the Q matrix is known—or in the case of continuous-time data, idenified directly—we

need to ensure that in any particular state it does not represent a mixture over potentially

multiple equilibria. To guarantee this, we invoke an assumption corresponding to As-

sumption 6 of ABBE, which was in turn a continuous-time version a similar assumption

required for identification and estimation of discrete time dynamic games (Bajari et al.,

2007; Aguirregabiria and Mira, 2007). See Aguirregabiria and Mira (2010) for a survey.
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Assumption 9 (Multiple Equilibria). The continuous time data generating process is such

that in each state k = 1, . . . , K:

(a) A single Markov perfect equilibrium is played corresponding with row k of the intensity

matrix Q.

(b) Players’ expectations about the distribution of state transitions are consistent with the

intensity matrix Q.

In a model with a unique equilibrium—for example the single agent renewal model—

this assumption is satisfied trivially. In games, it requires that in any markets where the

game is in the same state, the same equilibrium is played. We need this assumption no

matter if we observe discrete time data from P(∆), generated from some continuous-time

Q, or we observe continuous-time data generated from Q directly.

Next, we make the following assumption which requires that given the aggregate

intensity matrix Q, we can determine the player-specific intensity matrices Qi.

Assumption 10. The mapping Q → {Q0, Q1, . . . , QN} is known.

This assumption is obvious in the models we have considered, where players cannot

change each other’s state variables and where actions by nature can be distinguished

from the actions of players. Note also that the diagonal elements are unimportant: if the

off-diagonal elements of each Qi can be identified from Q, then diagonal elements are

equal to the negative of the sum of the off-diagonal elements. This assumption can be

verified by inspection of Q in both of our running examples. In the single-agent renewal

example Q is given in (12) and for the two-player entry model Q is given in (13). A

sufficient condition for Assumption 10 is that the continuation states resulting from actions

of different players are distinct: for all players i and m ̸= i and all states k,

{l(i, j, k) : j = 1, . . . , J − 1} ∩ {l(m, j, k) : j = 1, . . . , J − 1} = ∅.
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3.2. Identification of Hazards, Value Functions and Payoffs

We now establish that the value functions, instantaneous payoffs, and utility functions are

identified. Let Vi = (Vi1, . . . , ViK)
⊤ denote the K-vector of valuations for player i in each

state. Let ψij = (ψij1, . . . , ψijK)
⊤ denote the K-vector of instantaneous payoffs for player i

making choice j in each state and let ψi = (ψ⊤
i1 , . . . , ψ⊤

i J )
⊤. Given an appropriate collection

of linear restrictions on these quantities, we show below that they are identified.

Importantly, we note that when j = 0 is a latent or unobserved continuation action,

it is not possible to identify the rates hi0k even with continuous time data, so we cannot

immediately treat them as identified quantities.

For simplicity, we will now work under Assumption 8. Noting that hijk = λikσijk and

recalling the choice probabilities in (4), in this case differences in log hazards can be written

as

ln hijk − ln hi0k = ln σijk − ln σi0k = ψijk + Vi,l(i,j,k) − Vik.

Rearranging, we have

ln hijk = ln hi0k + ψijk + Vi,l(i,j,k) − Vik.

The hazards on the left hand side for j = 1, . . . , J − 1 are identified from Q, while the

quantities on the right hand size are unknowns to be identified.

Stacking equations across states k and choices j gives a linear system with (J − 1)K

identified hazards, K unknown hazards, (J − 1)K unknown instantaneous payoffs, and

K unknown valuations. The total number of unknowns is (J + 1)K. There are 2K more

unknowns than identified hazards, so identification fails without further restrictions.

Before proceeding, we define Sij to be the state transition matrix induced by the

continuation state function l(i, j, ·). In other words, Sij is a permutation matrix where

the (k, l) element is 1 if playing action j in state k results in a transition to state l and 0
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otherwise. Let IK denote the K × K identity matrix. Then we have,


ln hi1

...

ln hi,J−1

 =



IK IK 0 . . . 0 Si1 − IK

IK 0 IK . . . 0 Si2 − IK
...

...
...

...
...

...

IK 0 0 . . . IK Si,J−1 − IK





ln hi0

ψi1
...

ψi,J−1

Vi


.

Define Xi to be the (J − 1)K × (J + 1)K partitioned matrix and let Ri and ri denote linear

restrictions on the unknowns for player i. Let h+i denote the identified hazards for choices

j > 0 and h0
i denote the unidentified hazards for j = 0. Then the augmented system is:

ln h+i

ri

 =

Xi

Ri




ln h0
i

ψi

Vi

 .

Under Assumption 6, for any action j > 0 in any state k, the continuation state is

different from k. Therefore, the diagonal elements of Sij are all zero and Sij − IK has full

rank for each j > 0 and these blocks are linearly independent across j. This means that Xi

has rank (J − 1)K and so we will need 2K additional full-rank restrictions for identification.

Theorem 4. Suppose Assumptions 1–10 hold. If for player i there exists a collection of linear

restrictions represented by a matrix Ri and vector ri such that

Ri


ln h0

i

ψi

Vi

 = ri

and the matrix
[

Xi
Ri

]
has rank (J + 1)K, then h0

i , ψi, and Vi are identified.

First, we note that the number of restrictions per player is independent of the total
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number of players in the game. Therefore, the total number of required identifying

restrictions is only linear in N. On the other hand, for discrete time models the number of

restrictions needed is exponential in N (Pesendorfer and Schmidt-Dengler, 2008).

It is helpful now to consider some examples. If we assume that the instantaneous

payoffs are constant across k, as is the case in many applications of dynamic games, this

implies ψijk − ψijl = 0 for all choices j > 0 and all states l ̸= k. This gives (J − 1)(K − 1)

restrictions per player. When J = 2, we still need K + 1 additional restrictions. If we

further assume that the move arrival rate is constant across states (∑J−1
j=0 hijk = ∑J−1

j=0 hijl for

all l ̸= k) then we have K − 1 restrictions. In this case, even if J = 2 then only 2 additional

restrictions are needed.

Finding additional full-rank restrictions is also possible for certain applications. Ex-

amples include states where the value function is known, for example, if Vik = 0 when a

firm has permanently exited. Exclusion restrictions of the form Vik = Vik′ are also possible,

where k and k′ are two states that differ only by a rival-specific state and are payoff

equivalent to firm i. In all of these cases, the rank condition can be verified by inspection

in applications.

Finally, we also note that Theorem 4 does not consider identification restrictions across

players, but in practice these can provide additional identifying restrictions.

Renewal Example (continued). In the single-agent renewal model, since the replacement cost

does not depend on the mileage state we have ψ1k = µ for all k. This yields K − 1 restrictions of

full rank of the form ψ1k − ψ11 = 0 for k = 2, . . . , K. If we also assume the rate of move arrivals is

constant across two subsets of states (i.e., λL and λH), this yields K − 2 additional restrictions. The

linearity of the utility function also imposes restrictions on V, and although this does not fit in the

linear restriction framework of Theorem 4 it also contributes to identification of ψ and V.

2 × 2 Entry Example (continued). In the simple two-player entry-exit model, we may suppose

that the entry costs and scrap values are independent of the market state (high or low demand) and

whether a rival is present. In other words, ψi1k −ψi11 = 0 for all states k, yielding K− 1 restrictions

per player. Additionally, if we assume the rate of move arrivals is firm-specific (λik = λi), this
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yields K − 1 restrictions per player. Alternatively, we considered rates depending only on the level

of demand (λL and λH). This specification would yield K − 2 restrictions.

Finally, we note that in practice the overall rate of actions can be identified through the

nonlinear restrictions imposed by the distributional assumptions on the error term, which

imply shape restrictions on the choice probabilities across states. These are difficult to char-

acterize in the linear restriction framework we have used here, but in practice parametric

assumptions will aid identification in addition to the linear restrictions considered above.

3.3. Identification of the Payoffs

It remains to identify the K-vector of payoffs ui for each player i. In light of the linear

representation in (9),

ui = Ξi(Q)Vi − LiCi(σi)

where Ξi(Q) is the matrix function defined in (10). Under the maintained assumptions, Vi,

ψi, and hi can be identified for each player by Theorem 4. The choice probabilities σi are

also identified since the choice-specific hazards hijk are identified for all choices, including

j = 0. Therefore, ui can be obtained from the equation above.

Theorem 5 (Identification of Flow Payoffs). Suppose Assumptions 1–10 hold. If for any player

i the quantities Vi, ψi, and Q are identified, then the flow payoffs ui are also identified.

4. A Continuous-Time Quality Ladder Model of Oligopoly Dynamics

To illustrate the application to dynamic games used in empirical industrial organization

we consider a discrete control version of the quality ladder model proposed by Ericson

and Pakes (1995). This model has been examined extensively by Pakes and McGuire (1994,

2001), Doraszelski and Satterthwaite (2010), Doraszelski and Pakes (2007), and others. The

model consists of at most N firms who compete in a single product market. The products
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are differentiated in that the product of firm i at time t has some quality level ωit ∈ Ω,

where Ω = {1, 2, . . . , ω̄, ω̄ + 1} is the finite set of possible quality levels, with ω̄ + 1 being

a special state for inactive firms. Firms with ωit < ω̄ + 1 are incumbents. In contrast to

Pakes and McGuire (1994), all controls here are discrete: given a move arrival, firms choose

whether or not to invest to move up the quality ladder, rather than how much to spend to

increase their chances of doing so.

We consider the particular example of price competition with a single differentiated

product where firms make entry, exit, and investment decisions, however, the quality

ladder framework is quite general and can be easily adapted to other settings. For example,

Doraszelski and Markovich (2007) use this framework in a model of advertising where,

as above, firms compete in a differentiated product market by setting prices, but where

the state ωit is the share of consumers who are aware of firm i’s product. Gowrisankaran

(1999a) develops a model of endogenous horizontal mergers where ωit is a capacity level

and the product market stage game is Cournot with a given demand curve and cost

functions that enforce capacity constraints depending on each firm’s ωit.

To allow for firm and state heterogeneity in move arrival rates, we may think that some

firms monitor the market more frequently in some states than others, and thus have a

higher move arrival rate λik. We will suppose that the frequency of monitoring is related

to the quality of the firm’s product. We assume that firms with endogenously higher

product quality monitor the market more frequently than those with lower product quality

and/or potential entrants. We will define “high product quality” as ωit ≥ ωh. Therefore,

we assume that λik = λL for incumbents with ωit < ωh and for potential entrants while

λik = λH for incumbents with ωit ≥ ωh. Implicitly, λik = 0 if firm i is not active in state k.

Note that these modeling choices also serve as identifying restrictions in the sense

of Theorem 4. If K is the total number of state variables then we have K − 3 equality

restrictions for each firm i. K − 3 is the sum over three sets of restrictions, one each for λL,

λH, and inactive states where λik = 0.
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4.1. State Space Representation

We make the usual assumption that firms are symmetric and anonymous. That is, the

primitives of the model are the same for each firm and only the distribution of firms across

states, not the identities of those firms, is payoff-relevant. By imposing symmetry and

anonymity, the size of the state space can be reduced from the total number of distinct

market structures, (ω̄ + 1)N , to the number of possible distributions of N firms across ω̄ + 1

states.11 The set of relevant market configurations is thus the set of ordered tuples of length

ω̄ + 1 whose elements sum to N, denoted S = {(s1, . . . , sω̄+1) : ∑j sj = N, sj ∈ Z∗}, where

Z∗ is the set of nonnegative integers. In this notation, each vector ω = (ω1, . . . , ωN) ∈ ΩN

maps to an element s = (s1, . . . , sω̄+1) ∈ S with sj = ∑N
i=1 1{ωi = j} for each j.

Each firm also needs to track its own quality, so payoff relevant market configurations

from the perspective of firm i are described by a tuple (ωi, s) ∈ Ω × S, where ωi is

firm i’s quality level and s is the market configuration. For our implementation, we

map the multidimensional space Ω ×S to an equivalent one-dimensional state space

K = {1, . . . , |Ω| × |S|} so that we can represent quantities in matrix-vector form and we

use pre-computed transition addresses to avoid re-computing continuation states.

4.2. Product Market Competition

Again, we follow Pakes and McGuire (1994) in assuming a continuum of consumers with

measure M̄ > 0 and that each consumer’s utility from choosing the good produced by

firm i is g(ωi)− pi + ε i, where ε i is iid across firms and consumers and follows a type I

extreme value distribution. The g function is used to enforce an upper bound on profits.

As in Pakes, Gowrisankaran, and McGuire (1993), for some constant ω∗ we define

g(ωi) =


ωi if ωi ≤ ω∗,

ωi − ln(2 − exp(ω∗ − ωi)) if ωi > ω∗.

11In practice, we use the “probability density space” encoding algorithm described in Gowrisankaran
(1999b), to map market structure tuples s ∈ S to integers x ∈ X.
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Let si(ω, p) denote firm i’s market share given the state ω and prices p. From McFadden

(1974), we know that the share of consumers purchasing good i is

si(ω, p) =
exp(g(ωi)− pi)

1 + ∑N
j=1 exp(g(ωj)− pj)

.

In a market of size M̄, firm i’s demand is qi(ω, p) = M̄si.

All firms have the same constant marginal cost c ≥ 0. Taking the prices of other firms,

p−i, as given, the profit maximization problem of firm i is

max
pi≥0

qi(p, ω)(pi − c).

Caplin and Nalebuff (1991) show that (in this single-product firm setting) there is a unique

Bertrand-Nash equilibrium, which is given by the solution to the first order conditions:

∂qi

∂pi
(p, ω)(pi − c) + qi(p, ω) = 0.

Given the functional forms above, the first order conditions become

−(pj − c)(1 − sj) + 1 = 0.

We solve this nonlinear system of equations numerically using the Newton-Raphson algo-

rithm to obtain the equilibrium prices and the implied profits π(ωi, ω−i) = qi(p, ω)(pi − c)

earned by each firm i in each state (ωi, ω−i).

4.3. Incumbent Firms

We consider a simple model in which incumbent firms have three choices. Firms may

continue without investing at no cost, they may invest an amount κ in order to increase

the quality of their product from ωi to ω′
i = min{ωi + 1, ω̄}, or they may exit the market

and receive some scrap value φ. We denote these choices, respectively, by the choice set
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J = {0, 1, 2}. When an incumbent firm exits the market, ωi jumps deterministically to

ω̄ + 1. Associated with each choice j is a private shock ε ijt. These shocks are iid over firms,

choices, and time and follow a standard type I extreme value distribution (Assumption 8).

Given the future value associated with each choice, the resulting choice probabilities are

defined by a logit system.

For any market-wide state k ∈ K, let ωk = (ωk1, . . . , ωkN) denote the corresponding

market configuration in ΩN . In the general notation introduced above, the instantaneous

payoff ψijk to firm i from choosing choice j in state k is

ψijk =


0 if j = 0,

−κ if j = 1,

φ if j = 2.

In terms of identifying restrictions for applying Theorem 4, the assumption that ψijk is

constant across k for j = 1 and j = 2 provides 2(K − 1) restrictions per player.12

The state resulting from continuing (j = 0) is simply l(i, 0, k) = k. Similarly, for

investment (j = 1), l(i, 1, k) = k′ where state k′ is the element of X such that ωk′i =

min{ωki + 1, ω̄} and ωk′m = ωkm for all firms m ̸= i. Note that we are considering only

incumbent firms with ωki < ω̄ + 1. Exiting is a terminal action with an instantaneous

payoff but no continuation value.

Each incumbent firm pays a constant flow fixed cost µ while remaining in the mar-

ket, and receives the flow profits πik = π(ωki, ωk,−i) associated with product market

12We do not include the restriction ψijk = 0 for j = 0 in this count, as it was captured by Assumption 6.
We also note that Theorem 4 does not exploit identification restrictions across players, but in practice these
provide additional identifying power for this model.
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competition. The value function for an incumbent firm in state k is thus

Vik =
1

ρ + ∑l ̸=k qkl + ∑N
m=1 λmk

(
πik − µ + ∑

l ̸=k
qklVil + ∑

m ̸=i
λmk ∑

j
σmjkVi,l(m,j,k)

+λik E max
{

Vik + ε i0, Vi,l(i,1,k) − κ + ε i1, φ + ε i2

})
.

Conditional upon moving while in state k, incumbent firms face the maximization problem

max {Vik + ε i0,−κ + Vik′ + ε i1, φ + ε i2} . The resulting choice probabilities are

σi0k =
exp(Vik)

exp(Vik) + exp(−κ + Vik′) + exp(φ)
,

σi1k =
exp(−κ + Vik′)

exp(Vik) + exp(−κ + Vik′) + exp(φ)
,

σi2k = 1 − σi0k − σi1k,

where, as before, k′ = l(i, 1, k) denotes the resulting state after investment by firm i.

4.4. Potential Entrants

Whenever the number of incumbents is smaller than N, a single potential entrant receives

the opportunity to enter at rate λL. Potential entrants are short-lived and do not consider

the option value of delaying entry. If firm i is a potential entrant with the opportunity to

move it has two choices: it can choose to enter (j = 1), paying a setup cost η and entering

the market immediately in a predetermined entry state ωe ∈ Ω or it can choose not to

enter (j = 0) at no cost. Associated with each choice j is a stochastic private payoff shock

εe
ijt. These shocks are iid across firms, choices, and time, and are distributed according to

the type I extreme value distribution (Assumption 8).

In our general notation, for actual entrants (j = 1) in state k the instantaneous payoff

is ψi1k = −η and the continuation state is l(i, 1, k) = k′ where k′ is the element of K with

ωk′i = ωe and ωk′m = ωkm for all m ̸= i. For firms that choose not to enter (j = 0) in state k,

we have ψi0k = 0 and the firm leaves the market with no continuation value. Again, these
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restrictions on ψijk each contribute identifying restrictions for the structural primitives.

Thus, upon moving in state k, a potential entrant faces the problem

max {εe
i0,−η + Vik′ + εe

i1}

yielding the conditional entry-choice probabilities

σi1k =
exp(Vik′ − η)

1 + exp(Vik′ − η)
.

4.5. State Transitions

In addition to state transitions resulting directly from entry, exit, or investment decisions,

the overall state of the market follows a Markov jump process. At rate γ, the quality of

each firm i jumps from ωi to ω′
i = max{ωi − 1, 1}. This process represents an industry-

wide negative demand shock, which can be interpreted as an improvement in the outside

alternative.

5. Empirical Example and Monte Carlo Experiments

In this section, we describe an empirical example along with a series of Monte Carlo

experiments conducted using both the single-agent renewal model and the quality ladder

model outlined in Section 4.

5.1. Maximum Likelihood Estimation

The model can be estimated using maximum likelihood if either the equilibria can be

enumerated or there is a unique equilibrium. Since the focus of this paper is identification,

rather than developing a new estimator, our Monte Carlo experiments all proceed using the

maximum likelihood estimator using value function iteration.13 Multiplicity of equilibria

13More generally, it is possible that methods proposed for discrete time models, such as the homotopy
method (Borkovsky, Doraszelski, and Kryukov, 2010; Besanko, Doraszelski, Kryukov, and Satterthwaite,
2010; Bajari, Hong, Krainer, and Nekipelov, 2010) or recursive lexicographical search (Iskhakov, Rust, and
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is not a concern for the single agent model and appears not to be a major issue in practice

for the continuous-time oligopoly model specifications we consider below, although we

have not established that there is a unique equilibrium.

However, it is important to note that in models with multiple equilibria, this maximum

likelihood procedure, which relies on value function iteration, is potentially unstable. In

such cases, we recommend using two-step estimators that do not suffer from this issue.

ABBE introduced a two-step PML (pseudo maximum likelihood) estimator, which is

similar in spirit to the CCP estimator of Hotz and Miller (1993) for discrete-time single-

agent models. More recently, Blevins and Kim (2024) developed the continuous time NPL

(CTNPL) estimator, an iterative estimator in the spirit of Aguirregabiria and Mira (2007).

However, these two-step estimation methods assume that the rate of move arrivals λ is

known. Adapting them to the more general case remains an open question. Similarly,

other estimators for discrete time models such as those developed by Aguirregabiria and

Marcoux (2021) and Dearing and Blevins (2024) could potentially be adapted to the current

framework.

Given this, we focus on the maximum likelihood estimator for the empirical example

and simulations that follow. This approach allows us to examine the computational

properties of the model and how estimates behave when the sampling frequency of the

data changes in a setting without two-step estimation error.

With continuous-time data, we have a sample of N̄ tuples (τn, in, an, kn, k′n). Each

describes a jump or move where, for each observation n: τn is the holding time since the

previous event, in is the player index associated with this event (in = 0 is nature), an is

the action taken by player in, kn denotes the state at the time of the event, and k′n denotes

the state immediately after the event. Let g(τ; λ) and G(τ; λ) denote the pdf and cdf of

Schjerning, 2016), could be adapted to our model as well, but this is beyond the scope of the present paper.
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Expo(λ). Now, let ℓn(θ) denote the likelihood of observation n given θ:

ℓn(θ) = g(τn; q(kn, kn; θ))︸ ︷︷ ︸
Arrival time

q0(kn, kn; θ)

q(kn, kn; θ)︸ ︷︷ ︸
Event is jump

· p(kn, k′n; θ)︸ ︷︷ ︸
Transition


1{in=0}

×

qN(kn, kn; θ)

q(kn, kn; θ)︸ ︷︷ ︸
Event is move

· σ(in, an, kn; θ)︸ ︷︷ ︸
CCP


1{in>0}

.

Here, q(k, k′; θ) denotes the absolute value of the (k, k′) element of the intensity matrix

Q(θ) for given parameters θ. We use q0(k, k′; θ) and qN(k, k′; θ) similarly to denote the

elements of Q0 and ∑N
i=1 Qi respectively. Finally, p(k, k′; θ) denotes the probability of a

jump from k to k′ conditional on a jump occurring. Now the full log-likelihood of the

sample of N̄ observations on the interval [0, T] is simply

ln LCT
N̄ (θ) =

N̄

∑
n=1

ln ℓn(θ) + ln [1 − G(T − tN̄ , q(kN̄ , kN̄ ; θ))] .

The final term is the probability of not observing an event on the interval (tN̄ , T].

With discrete-time data sampled at equispaced intervals ∆ our sample consists of a

collection of states {k1, . . . , kN̄} with N̄ observations. The likelihood function is given by:

ln LDT
N̄ (θ) =

N̄

∑
n=2

ln P (kn−1, kn; ∆, θ) ,

where P(k, l; ∆, θ) denotes the (k, l) element of the transition matrix induced by θ.

5.2. Single Agent Renewal Model

Here, we consider the single-agent binary choice (bus engine replacement) model described

above. We first estimate a continuous time version of the model using the same data that

Rust (1987) used to estimate the original discrete time model. We then use the estimates to
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Bus Months
Group Buses Per Bus Bus-Months
1 15 24 360

2 4 48 192

3 48 69 3,312

4 37 116 4,292

5 12 125 1,500

6 10 125 1,250

7 18 125 2,250

8 18 125 2,250

Total 162 – 15,406

Table 1. Rust (1987) Sample Characteristics

calibrate parameters for a series of Monte Carlo experiments.

Recall that the model as described above allows for heterogeneity in move arrival

rates across states. We will begin with a simpler model with a constant and fixed rate

of decisions, λk = 1 for all k, as in ABBE. Next, we allow λ to vary freely and estimate

it. Finally, we will estimate the version of the model with heterogeneous decision rates:

specifically, λL is the rate of decisions for buses with mileage states k = 1, 2, . . . , ⌊K/2⌋

and λH is the rate for mileage states k = ⌊K/2⌋+ 1, . . . , K. Overall, the parameters to

be estimated are θ = (λL, λH, γ, β, µ), which include the move arrival rates, the rate of

mileage increase γ, the mileage cost parameter β, and the engine replacement cost µ.

To calibrate the true parameters for this experiment, we first estimated the model

using data from Rust (1987) for all bus groups 1–8. The dataset consists of monthly bus

mileage recordings as well as the recorded months of bus engine replacement. We provide

statistics about the number of observations per bus group in Table 1. Across bus groups,

the smallest time horizon per bus was 24 months (2 years) for group 1. The longest time

horizon was 125 months (around 10 years) for groups 5–9. As reported by Rust (1987),

engine replacement occurred on average after 5 years (60 months) at over 200,000 elapsed

miles. This information will be useful to help understand hazard rates in the continuous

time model, where one unit of time is equal to one month, and the dataset consists of

observations spaced at equal time intervals ∆ = 1.
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We use the full-solution maximum likelihood approach to estimate the model. We

fixed the discount rate at ρ = 0.05 and the number of mileage states at K = 90. The

value functions are obtained through value function iteration for each value of θ in an

inner loop to within a tolerance of ε = 10−16 under the supremum norm. We maximized

the likelihood function in an outer loop using the L-BFGS-B algorithm (Byrd, Lu, and

Nocedal, 1995; Zhu, Byrd, Lu, and Nocedal, 1997) with numerical derivatives with step

size h = 10−8. For robustness to local optima, we took the estimates to be the parameter

values which achieved the highest likelihood over 20 random starting values.

Although this approach is straightforward for our simulations, it is not computationally

efficient. For each iteration, it requires solving the fixed point problem once for each trial

value of θ and again for small steps in the direction of each component of θ. Alternative

methods, such as the NFXP approach by Rust (1987), utilize analytical derivatives of the

Bellman operator to compute analytical derivatives of the log-likelihood function. When

combined with the BHHH algorithm (Berndt, Hall, Hall, and Hausman, 1974), which

approximates the Hessian of the log-likelihood function via the outer product of the

scores using the information matrix identity, this can provide substantial computational

savings in models with many parameters. In our context, although the Bellman operator

in continuous time is differentiable, this would require computing analytical derivatives

of the matrix exponential with respect to individual components of the matrix argument.

These methods can be computationally expensive, involving the truncation of infinite

sums, evaluation of numerical integrals, or eigenvalue decompositions of possibly high-

dimensional matrices (Magnus, Pijls, and Sentana, 2021). On the other hand, if feasible,

Newton-Kantorovich-type methods could have particular advantages in the context of

continuous time models, where the Q matrix is typically very sparse, leading to sparse

derivatives of the Bellman operator.

The estimated structural parameters and standard errors are reported in Table 2.

The first column of results corresponds to the model where we hold fixed λ = 1 (i.e.,

λH = λL = 1). In this model, the manager is assumed to make decisions on average once
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per month, corresponding to the timing of decisions in a discrete time model. The second

column contains estimates for the model where we allow λ to vary and estimate it (i.e.,

λH = λL). The final column reports estimates for the heterogeneous version of the model

where λH may differ from λL.

We can see that the estimated decision rates are quite different from 1. Therefore, this

provides an interesting setting in which to compare the estimated costs and differences in

interpretation. The variable λ specification indicates a relatively low rate of monitoring,

with λ̂ = 0.032 (vs. λ = 1), but a higher cost of mileage, β̂ = −1.257 (vs. β̂ = −0.533). The

specification with λ = 1 seems to rationalize the assumed overly frequent monitoring by

yielding a lower estimated cost of mileage.

In the heterogeneous model, there appears to be a slight decrease in the estimated

rate of monitoring in lower mileage states, with λ̂L = 0.022 for lower mileage states

as compared to λ̂H = 0.033 in high mileage states. The estimated cost of mileage is

β̂ = −1.711 and the cost of replacement is µ̂ = −9.643.

To choose between these three nested specifications, we carry out likelihood ratio

tests of the null hypotheses of homogeneity, H0 : λH = λL, and decision rates on average

equal to monthly decisions in the discrete time model, H0 : λ = 1. We fail to reject the

homogeneity restriction, but strongly reject the specification with λ = 1. It appears to be

important to let the rate of decisions vary as a parameter to be estimated, but perhaps they

are constant across mileage states in this setting.

Inspired by these estimates, we conducted a Monte Carlo experiment using the model

with true parameters specified as follows: (λL, λH, γ, β, µ) = (0.05, 0.10, 0.5,−2.0,−9.0).

We also report estimates of the cost ratio µ/β = 4.5 which, as is common in discrete choice

models, is more precisely estimated in most specifications than β or µ individually.

In the Monte Carlo, we estimate the model under several different sampling regimes

including full continuous-time data and discrete time data sampled at short and long

intervals ∆ = 1 and ∆ = 8. Recall that in the real dataset, ∆ = 1 corresponds to a time

period of one month. In the simulation, we can interpret ∆ = 8 as observing the manager’s
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Fixed λ = 1 Variable λ Heterogeneous λ
Est. S.E. Est. S.E. Est. S.E.

Decision rate (λ) 1.000 – 0.032 (0.005) – –
Decision rate 1 (λL) – – – – 0.022 (0.004)
Decision rate 2 (λH) – – – – 0.033 (0.005)
Mileage increase (γ) 0.526 (0.006) 0.526 (0.006) 0.526 (0.006)
Mileage cost (β) -0.533 (0.052) -1.257 (0.285) -1.711 (0.493)
Replacement cost (µ) -8.081 (0.393) -8.072 (1.345) -9.643 (2.189)
Log likelihood -13947.55 -13938.51 -13937.66

Observations 15406 15406 15406

Test for H0 : λL = λH = 1
LR – 18.08 19.78

p-value – 0.00002 0.00005

Test for H0 : λL = λH
LR – – 1.70

p-value – – 0.1923

Table 2. Model Estimates Based on Data from Rust (1987)

decision only once every 8 months. We simulate data over a fixed time interval [0, T] with

T = 120 months for each of M markets, with M varying from 200 to 3, 200. Recall from

Table 1 that the maximum time horizon was T = 125, so our simulation time horizon is

slightly shorter. Similarly, in the actual dataset we observed M = 162 buses. Our simulated

small sample size is M = 200, and we increase that to M = 800 and then M = 3200 to

evaluate the large sample properties of the estimator.

For each specification, we report the mean and standard deviation of the parameter

estimates over 100 replications in Table 3. With the smallest sample size, M = 200,

although the rate parameters λL, λH, and γ are quite precisely estimated in all cases—even

with a long time interval between discrete time observations—the cost parameters β and

µ are overestimated. However, even still, they are overestimated in a way such that the

ratio µ/β is close to the true value. In large samples—as we increase the sample size

to M = 800 and M = 3200—all are parameters are estimated quite precisely and with

little bias. The loss of precision, measured by the standard deviations of the parameter

estimates, is minimal when moving from continuous-time data to discrete-time data with

∆ = 1, but it becomes more noticeable at ∆ = 8.
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M Sampling λL λH γ β µ µ/β

∞ DGP True 0.050 0.100 0.500 -2.000 -9.000 4.500

200 Continuous Mean 0.054 0.102 0.500 -2.128 -9.605 4.584

S.D. 0.009 0.009 0.004 0.708 2.759 0.360

200 ∆ = 1.00 Mean 0.054 0.103 0.508 -2.167 -9.740 4.558

S.D. 0.008 0.008 0.004 0.660 2.597 0.328

200 ∆ = 8.00 Mean 0.055 0.103 0.508 -2.335 -10.443 4.567

S.D. 0.010 0.009 0.005 1.055 4.251 0.386

800 Continuous Mean 0.051 0.101 0.500 -2.021 -9.116 4.526

S.D. 0.003 0.004 0.002 0.318 1.226 0.153

800 ∆ = 1.00 Mean 0.052 0.102 0.509 -2.043 -9.173 4.507

S.D. 0.004 0.004 0.002 0.325 1.244 0.157

800 ∆ = 8.00 Mean 0.052 0.102 0.509 -2.051 -9.204 4.508

S.D. 0.004 0.005 0.002 0.346 1.327 0.168

3200 Continuous Mean 0.050 0.100 0.500 -2.018 -9.081 4.504

S.D. 0.002 0.002 0.001 0.151 0.599 0.075

3200 ∆ = 1.00 Mean 0.051 0.102 0.508 -2.038 -9.126 4.481

S.D. 0.002 0.002 0.001 0.156 0.613 0.075

3200 ∆ = 8.00 Mean 0.051 0.102 0.508 -2.043 -9.145 4.481

S.D. 0.002 0.002 0.001 0.186 0.741 0.077

The mean and standard deviation are reported for 100 replications under several sampling regimes. For each
replication, M markets were simulated over a fixed time interval [0, T] with T = 120.

Table 3. Single Agent Renewal Model Monte Carlo Results
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5.3. Quality Ladder Model

In our second set of Monte Carlo experiments, we examine the quality ladder model as

described in Section 4. Table 4 provides an overview of the model specifications and the

computational time required for value function iteration. The table covers models with

player counts ranging from N = 2 with K = 56 states to N = 30 with K = 58, 433, 760

states. We keep the number of possible quality levels fixed at ω̄ = 7. For simplicity, the

quality level threshold for the decision rate is set to match the entry-level quality, with

ωh = ωe = 4. As the number of potential players (N) increases, we adjust the market

size (M̄) to ensure that the average number of active players (navg) grows accordingly.

Additionally, we report K, the number of distinct (ωi, ω) state combinations in X, from

the perspective of player i.

N ω̄ K M̄ Obtain V
2 7 56 0.40 0.15

4 7 840 0.60 0.27

6 7 5,544 0.75 0.65

8 7 24,024 0.85 3

10 7 80,080 0.95 10

12 7 222,768 1.05 30

14 7 542,640 1.15 79

16 7 1,193,808 1.20 199

18 7 2,422,728 1.25 422

20 7 4,604,600 1.30 882

22 7 8,288,280 1.35 1648

24 7 14,250,600 1.40 2964

26 7 23,560,992 1.45 6481

28 7 37,657,312 1.50 10804

30 7 58,433,760 1.55 17712

N denotes the number of players (including potential entrants), ω̄ denotes the number of quality levels, K
denotes the total number of distinct states, M̄ denotes the market size, and “Obtain V” denotes the time in

seconds required for value iteration convergence. Computational times are wall clock times using GNU
Fortran 12.2 on a 2019 Mac Pro with a 2.5 GHz 28-Core Intel Xeon W processor.

Table 4. Quality Ladder Model Monte Carlo Specifications

The final column of Table 4 compares the computational time required (wall clock

time) for obtaining the value function across specifications. This step is necessary to either
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generate a dataset or to simulate the model (e.g., to perform counterfactuals). We used

value function iteration where the stopping criterion is that the choice probabilities are

within a tolerance of ε = 10−8 in the supremum norm.

To put the computational times in perspective, Doraszelski and Judd (2012) noted that

it would take about one year to just solve for an equilibrium of a comparable14
14-player

game using the Pakes-McGuire algorithm. Similar computational times are reported in

Doraszelski and Pakes (2007). However, it takes just over one minute to solve the continuous-

time game with 14 players and 542,640 states. Even in the game with 30 players and over

58 million states, obtaining the value function took under 5 hours. We note that this would

be infeasible for full-solution estimation, but when estimating the model using two-step

methods, such as in ABBE or Blevins and Kim (2024), one may only need to carry out this

step once, after estimation, for simulating a counterfactual. Overall, these computational

times suggest that a much larger class of problems can be estimated and simulated in the

continuous-time framework.

Table 5 summarizes the results of our Monte Carlo experiments. We estimate the

structural parameters (λL, λH, γ, κ, η, µ). The true parameter values, which are also shown

in the table, are (λL, λH, γ, κ, η, µ) = (1.0, 1.2, 0.4, 0.8, 4.0, 0.9). Because we estimate firm

fixed costs µ, we set the scrap value received upon exit equal to zero (φ = 0).

We first used samples containing N̄ = 10, 000 continuous time events. In this case,

we observe the time of each event, the identity of the player, and the action chosen. For

each specification, we also report results for estimation with discrete time data with a

fixed sampling interval of ∆ = 1. In this case, we must calculate the matrix exponential

of the Q matrix at each trial value of θ. To do so, we use the uniformization algorithm

as described in Sherlock (2022). Because this matrix is high dimensional, but sparse, we

adapted the algorithm to use sparse matrix methods, and we precomputed the locations

of the non-zero elements to improve the computational speed.

14The times reported by Doraszelski and Judd (2012) are for a model with ω̄ = 9 but with no entry or exit,
which for a fixed value of N, is roughly comparable in terms of dimensionality to our model with ω̄ = 7,
which includes entry and exit.
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N K Sampling λL λH γ κ η µ

DGP True 1.000 1.200 0.400 0.800 4.000 0.900

2 56 Continuous Mean 1.022 1.215 0.398 0.790 4.017 0.926

S.D. 0.016 0.020 0.012 0.042 0.182 0.028

∆ = 1.0 Mean 1.011 1.211 0.400 0.760 3.818 0.916

S.D. 0.275 0.282 0.008 0.318 0.912 0.122

4 840 Continuous Mean 1.015 1.212 0.398 0.791 4.007 0.920

S.D. 0.016 0.018 0.014 0.038 0.149 0.025

∆ = 1.0 Mean 1.005 1.204 0.400 0.773 3.906 0.909

S.D. 0.183 0.182 0.007 0.256 0.646 0.071

6 5,544 Continuous Mean 1.011 1.211 0.398 0.802 4.041 0.911

S.D. 0.013 0.018 0.017 0.037 0.153 0.024

∆ = 1.0 Mean 1.000 1.202 0.400 0.785 3.964 0.902

S.D. 0.135 0.136 0.006 0.202 0.478 0.049

8 24,024 Continuous Mean 1.008 1.210 0.397 0.801 4.031 0.910

S.D. 0.140 0.017 0.016 0.033 0.153 0.023

∆ = 1.0 Mean 0.979 1.179 0.399 0.757 3.902 0.895

S.D. 0.090 0.092 0.006 0.149 0.353 0.030

Table 5. Quality Ladder Model Monte Carlo Results

For each replication, we used simulated annealing (Goffe, Ferrier, and Rogers, 1992,

1994) to maximize the log-likelihood function15 and used ε = 10−10 as the tolerance for

value function iteration.16 Each replication involves an extensive global parameter search

and each parameter evaluation solves a full solution problem for accuracy.17 Although

this is computationally costly, it allows us to focus on identification, computation, and

estimation under time aggregation in a setting without additional tuning parameters and

two-step estimation error.

The estimates are reasonably accurate and precise in all specifications, including the

firm heterogeneity in move arrival rates. As expected, we can see that the precision is

15For simulated annealing, we set the initial temperature to 0.01. We used an exponential decay schedule
with parameter 0.70. The initial stepsizes were (1.0, 1.0, 1.0, 3.0, 1.0). The period for temperature reductions
was 20 and dwell time between step size adjustments was 10. The step size adjustment factor was 2.0 and
the function value tolerance, considering the previous three best values, was 10−3. This resulted in about
15,000–20,000 log likelihood function evaluations per replication.

16Because of the time required to complete many replications of each specification, and because the
specification has undergone a revision, we have limited our consideration to models up to N = 8 players and
K = 24, 024 states for the Monte Carlo experiments.

17To ease the computational burden, we store up to 100 previous value functions and associated parameter
values. Then for each trial value of θ, we search for the closest (in Euclidean distance) previous parameter
values and use the associated value function as the starting value for value function iteration.
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decreased (standard errors are increased) in most cases due to the information lost with

only discretely sampled data. Although the standard errors are larger than those with

continuous time data, they are still reasonably small.

6. Conclusion

In this paper, we have developed new results on the theoretical and econometric properties

of a generalized instance of the empirical framework introduced by Arcidiacono, Bayer,

Blevins, and Ellickson (2016) for continuous time dynamic discrete choice games. We

showed that the rate of move arrivals is identified, whereas previously it was assumed to

be known. We established equilibrium existence with heterogeneous players and state-

dependent move arrival rates, developed conditions for identification with discrete time

data in the more general model, explored these results in the context of three canonical

examples widely used in applied work, and examined the computational properties of the

model as well as the finite- and large-sample properties of estimates through a series of

small- and large-scale Monte Carlo experiments based on familiar models.

A. Proofs

Proof of Theorem 1. First, note that the best response condition in (3) is equivalent to the

following inequality condition:

(15) δi(k, ε ik, σi) = j ⇐⇒ ψijk + ε ijk + Vi,l(i,j,k)(σi) ≥ ψij′k + ε ij′k + Vi,l(i,j′,k)(σi) ∀j′ ∈ J.

Define the mapping Υ : [0, 1]N×J×K → [0, 1]N×J×K by stacking best response probabilities:

Υijk(σ) =
∫

1
{

ε ij′k − ε ijk ≤ ψijk − ψij′k + Vi,l(i,j,k)(σ−i)− Vi,l(i,j′,k)(σ−i) ∀j′ ∈ Ji

}
f (ε ik) dε ik.

Υ is a continuous function from a compact space onto itself, so By Brouwer’s theorem, it

has a fixed point. The fixed point probabilities imply stationary Markov strategies that
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constitute a Markov perfect equilibrium. ■

Proof of Theorem 2. Given a collection of equilibrium best response probabilities {σi}N
i=1,

we arrived at the linear operator for the value function Vi(σi) in (8). As noted, Lemma 1

guarantees that difference Vi,l(i,j,k)(σi) − Vi,l(i,j′,k)(σi) can be expressed as a function of

payoffs and choice probabilities σi and so we can write Ci as a function of only conditional

choice probabilities and payoffs (i.e., it no longer depends on the value function).

Noting that Vi = Γi(Vi) and restating (8) to collect terms involving Vi(σi) yields

Vi(σi)

[
ρi Ik +

N

∑
m=1

Lm[IK − Σm(σm)]− Q0

]
= ui + LiCi(σi).

The matrix in square brackets side is strictly diagonally dominant: for each m ρm > 0 by

Assumption 2, Lm is a diagonal matrix with strictly positive elements by Assumption 3,

Σm(σm) has elements in [0, 1] with row sums equal to one, and elements of Q0 satisfy

|qkk| = ∑l ̸=k |qkl | in each row k. Therefore, by the Levy-Desplanques theorem (Horn and

Johnson, 1985, Theorem 6.1.10) this matrix is nonsingular. ■

Proof of Theorem 3. To establish generic identification of Q we can specialize the proof of

Theorem 1 of Blevins (2017) to the present setting, where Q is an intensity matrix with

row sums equal to zero and therefore has one real eigenvalue equal to zero and therefore

at most K − 1 complex eigenvalues. In this setting, P(∆) is observed and is the solution

to the Kolmogorov forward equations while Q is a matrix of unknown parameters with

qkl for l ̸= k being the hazard of jumps from state k to state l. The unique solution to

this system is the transition matrix P(∆) = exp(∆Q), which has the same form as the

matrix B in equation (3) of Blevins (2017) and Q in this model is analogous to A in (1).

Therefore, identification of Q depends on establishing a unique solution to an equation

involving a matrix exponential of a parameter matrix. In this setting Q is known to have

row sums equal to zero, and therefore the vector of ones is a right eigenvector of Q with

zero as the eigenvalue. In this case, the number of required restrictions on Q is reduced to

⌊(K − 1)/2⌋ because we know Q has at least one real eigenvalue.
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Under the assumptions the number of distinct states in the model is K ≡ K0KN
1 .

Therefore, we will require at least
⌊K−1

2

⌋
linear restrictions of the form R vec(Q) = r where

R has full rank. We proceed by showing that the present model admits an intensity matrix

Q with a known sparsity pattern and so we can use the locations of zeros as homogeneous

restrictions, where r will be a vector of zeros.

Recall that each player has J choices, but j = 0 is a continuation choice. This results in

J − 1 non-zero off-diagonal elements per row of Q per player. There are at most K0 − 1

non-zero off-diagonal elements due to exogenous state changes by nature. The only

other non-zero elements of each row are the diagonal elements and therefore there are

at least K − N(J − 1)− (K0 − 1)− 1 = K0KN
1 − N(J − 1)− K0 zeros per row of Q. The

order condition we need to show is that the total number of zero restrictions is at least

⌊(K − 1)/2⌋. For simplicity, it will suffice to show that there are K/2 ≥ ⌊(K − 1)/2⌋

restrictions. Summing across rows, this condition is satisfied when (K0KN
1 )(K0KN

1 − N(J −

1)− K0) ≥ K0KN
1 /2. Simplifying yields the sufficient condition in (14).

In terms of the restrictions required by Theorem 1 of Blevins (2017), the restrictions we

have generated all involve single-element zero restrictions on vec(Q) in distinct locations,

therefore the restriction matrix has full rank.

The derivative of the left-hand-side of (14) with respect to K0 is KN
1 − 1. This value is

always non-negative, since K1 ≥ 1, and is strictly positive when K1 > 1. The derivative

with respect to K1 is NK0KN−1
1 . This value is always strictly positive since K0 ≥ 1 and

K1 ≥ 1. Finally, the derivative with respect to J is −N. ■
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