A Generic Linked List Implementation in

Fortran 95*

JASON R. BLEVINS'

Department of Economics, Duke University

May 18, 2009

Abstract. This paper develops a standard conforming generic linked list in Fortran 95
which is capable of storing data of an any type. The list is implemented using the transfer
intrinsic function, and although the interface is generic, it remains relatively simple and
minimizes the potential for error. Although linked lists are the focus of this paper, the
generic programming techniques used are very general and broadly-applicable to other
data structures and procedures implemented in Fortran g5 that need to be used with data

of an unknown type.

Keywords: Fortran 95, generic programming, data structures, scientific computing.

1. INTRODUCTION

A linked list, or more specifically a singly-linked list, is a list consisting of a series of
individual node elements where each node contains a data member and a pointer that
points to the next node in the list. This paper describes a generic linked list implementation
in standard Fortran 95 which is able to store arbitrary data, and in particular, pointers to
arbitrary data types. While linked lists are the focus of this paper, the underlying idea can
be easily used to create more general generic data structures and procedures in Fortran
95. The generic_list module is developed in detail below, followed by an example control
program which illustrates the list interface, showing how to use Fortran’s transfer intrinsic
function to store and retrieve pointers to derived type data variables.

This module has several advantages: it is written in standard Fortran 95 to ensure
portability, it is self-contained and does not require the use of a preprocessor or include
statements, and the transfer function only needs to be called once by the user, resulting in
clean code and minimizing the potential for errors. Furthermore, simple wrapper functions
can be written for specific types so that transfer would not need to be called at all by the

user.

*The author benefited greatly from Arjen Markus’s open source FLIBS project at http://flibs.sourceforge.
net/, which illustrates several generic programming techniques, and from reading Richard Maine’s descriptions
of using transfer to pass pointers, posted to comp.lang.fortran.

tEmail: jason.r.blevins@duke.edu


http://flibs.sourceforge.net/
http://flibs.sourceforge.net/
http://flibs.sourceforge.net/
http://flibs.sourceforge.net/
mailto:jason.r.blevins@duke.edu

Several other generic list implementations have been offered, each with its own advan-
tages and disadvantages. The generic list of McGavin and Young (2001) is very similar to
the one presented here, but it is not standard-conforming due to an assumption about the
physical representation of pointers to derived types. The method described below avoids
this problem by writing the list interface in such a way that the compiler automatically
determines the exact amount of storage required for any arbitrary data type the user
wishes to store in the list.

The FLIBS project (Markus, 2008) provides a generic linked list in the form of an
include file. The user then creates a new module for each data type that will be stored
in a list. The module then includes the generic list code. This approach is clean in that
the compiler can perform type checking to reduce errors, however, it requires the user to
create potentially many new modules and each list can only store data of a single type.
The method described in this paper does not require the user to write any additional code.

The generic_list module it is not, however, without flaws. In particular, the transfer
function can be confusing for new Fortran programmers and must be used with care to
avoid subtle errors. Furthermore, a disadvantage with respect to type-aware lists is that
when storing pointers to data elements in the generic list, the elements must be allocated
and deallocated by the user. This is the case with all dynamically allocated memory in
Fortran, but it is nonetheless an area where care should be taken when implementing the
generic programming techniques used herein.

While the generic_list implementation in this paper uses the transfer function, other
generic programming techniques are also possible. A preprocessor such as the C prepro-
cessor, m4, or a Fortran-specific preprocessor such as Forpedo (McCormack, 2005) can be
used to automatically generate specific code from generic code. Markus (2001) discusses
generic programming in Fortran go using both text substitution and implementation-hiding.
The former is a form of preprocessing while the latter is accomplished by writing, say, a
quicksort (Hoare, 1961) routine in such a way that it requires passing only two procedures
for swapping and comparing data elements, rather than passing the data array itself. The
swap and compare procedures have a generic interface and so the resulting sort routine is
type-independent.

It is also worth nothing that with the introduction of Fortran 2003, the methods
discussed in this paper will no longer be necessary. Instead, new features such as unlimited
polymorphic (class(*)) objects or C pointers (variables of type(c_ptr)) can be used to
implement generic data structures in a more natural way. However, until Fortran 2003
compliant compilers become widely available, Fortran g5 techniques such as these will
remain useful.

In the following, we first briefly review Fortran pointers and the transfer intrinsic

before presenting the generic_list module and an example program.



2. POINTERS AND THE TRANSFER INTRINSIC

Fortran 95 has no syntax for constructing arrays of pointers and it requires some additional
work to manipulate pointers themselves rather than the pointer targets. A common idiom
involves constructing a derived type containing only a pointer to the data in question. The
same approach can be used to store pointers in the generic list presented here. Consider,
for example, a representative data type called data_t and an associated derived type for
storing data_t pointers called data_ptr.

I A representative derived type for storing data

module data

implicit none

private
public :: data_t
public :: data_ptr

! Data is stored in data_t
type :: data_t
real :: Xx

end type data_t

! A container for storing data_t pointers
type :: data_ptr

type(data_t), pointer :: p
end type data_ptr

end module data

The data_t type is very simple, holding only a single real variable, but such data
container types can easily become very complex in specific applications. As such, rather
than using transfer to copy entire data_t structures in and out of the list, it is sometimes
desirable to copy the smaller data_ptr structures instead. The data_ptr type also allows us

to create arrays of pointers:
type(data_ptr), dimension(100) :: pointer_array

In most cases, it is these pointers that we would like to store in the linked list nodes.
Rather than build a new list for each possible type we might want to store, we use
the transfer function to convert data of an arbitrary type to an array of integers before
storing it in the list. We thus only have to write one linked-list module which is capable of
handling rank-one integer arrays.
The transfer function introduced in Fortran 9o can be used to move data of one type
through procedures and variables that were expecting data of some other type. In this



sense, transfer can approximate the behavior of void pointers in C. Essentially, it copies
the bits in memory representing a variable source to a scalar or array of the same type as a
given mold. The syntax for transfer is

result = transfer(source, mold[, sizel)

where source and mold are scalars or arrays of any type and size is an optional scalar of
type integer. The result is of the same type as mold. If size is given, result is a rank-one
array of length size. If size is omitted but mold is an array, then result is an array just large
enough to represent the source. Finally, if size is omitted and mold is a scalar, then result is
a scalar.

Returning to our data_ptr pointer example above, we can convert pointers to integer
arrays by using transfer as follows:

program transfer_ptr
use data

implicit none

type(data_ptr) :: ptr

type(data_t), target :: dat

integer, dimension(:), allocatable :: iarr
integer :: len

dat%sx = 3.1416
ptresp => dat

len = size(transfer(ptr, iarr))
allocate(iarr(len))

iarr = transfer(ptr, iarr)
deallocate(iarr)

end program transfer_ptr

The above code makes two calls to transfer: first, to probe the size of the array needed
to store the pointer in integer form, and second, to actually transfer the data. We must
check the size for generality. It might be the case that the data_t pointer uses the same
amount of storage as a single default integer, but the Fortran standard does not guarantee
this. Furthermore, we might wish to store other types of data in the list, not just pointers.

On the author’s system, for one run of the transfer_ptr program above, the values
of len and iarr were 2 and (1054311824, 32767) respectively. Note that the value of iarr
represents the location of dat in memory and will likely differ each time the program is
executed.

The transfer construction above is verbose, error prone, and inefficient. The interface
of the generic_list implementation is designed to minimize the inconvenience of using



transfer so that only a single call to transfer is required to store or retrieve data from the list.
Instead of manually allocating the temporary array, we can use the transfer statement as
an argument expression, along with assumed-shape arrays in the list interface, and let the
compiler determine the appropriate size, thus avoiding one call each to size and transfer.
Although the compiler will create a temporary array, it replaces the manually-allocated

array in the above example which will not be required.

3. IMPLEMENTATION

The generic_list module below defines the list_node_t type, from which the list is con-
structed, and the related procedures for initializing and freeing the list and manipulating
list nodes. Although the data element of each list node is defined as a pointer to an array of
integers, the list is not intended to simply store integers. Rather, Fortran’s transfer intrinsic
will be used to “encode” any arbitrary data type so that it can be represented as an array
of integers. When data needs to be accessed later, transfer is used again to “decode” it,
returning it to its original type. Using the methods of the previous section, we can also
store pointers to arbitrary data types in the list.

The module first defines a few types including the list_node_t type which stores the
data and well as a variable 1ist_data which is defined for convenience to be used as a mold

for transfer.

module generic_list

implicit none

private
public :: list_node_t, list_data
public :: list_init, list_free

public :: list_insert, list_put, list_get, list_next

! A public variable used as a MOLD for transfer()

integer, dimension(:), allocatable :: list_data

! Linked list node

type :: list_node_t

private
integer, dimension(:), pointer :: data => null()
type(list_node_t), pointer :: next => null()

end type list_node_t

contains



! Procedures to initialize and free generic_list objects
include ’'list_init.f90’
include 'list_free.f90’

! Basic list operations such as insert and next

include ’list_operations.f90’

| List data accessors

include ’list_accessors.f90’

end module generic_list

Two life-cycle procedures are defined to initialize memory for the list (1ist_init) and
to free the memory once the list is no longer needed (list_free). The list_init subroutine
allocates memory for a “head node” and nullifies the next pointer. It also takes an optional
data argument to allow the first data object to be stored upon initialization.

! Initialize a head node SELF and optionally store the provided DATA.
subroutine list_init(self, data)
type(list_node_t), pointer :: self

integer, dimension(:), intent(in), optional :: data

allocate(self)
nullify(self%snext)

if (present(data)) then
allocate(self%sdata(size(data)))
self%sdata = data

else
nullify(self%data)

end if

end subroutine list_init

The list_free procedure traverses the list, deallocating list nodes and their data until
the end of the list is reached, as indicated by a node with a null next pointer.

! Free the entire list and all data, beginning at SELF
subroutine list_free(self)
type(list_node_t), pointer :: self
type(list_node_t), pointer :: current

type(list_node_t), pointer :: next

current => self

do while (associated(current))



next => current%snext

if (associated(current%data)) then
deallocate(current%data)
nullify(self%sdata)

end if

deallocate(current)

nullify(current)

current => next

end do

end subroutine list_free

Since the list node data is encapsulated by the private attribute in order to hide the
implementation, three simple accessor procedures list_put, list_get, and list_next are also
defined. list_put stores encoded data in a particular list node and list_get retrieves data.
The list_next function returns the next node in the list.

! Store the encoded DATA in list node SELF
subroutine list_put(self, data)
type(list_node_t), pointer :: self

integer, dimension(:), intent(in) :: data

if (associated(self%data)) then
deallocate(self%data)
nullify(self%sdata)

end if

self%data = data

end subroutine list_put

! Return the DATA stored in the node SELF

function list_get(self) result(data)
type(list_node_t), pointer :: self
integer, dimension(:), pointer :: data
data => self%data

end function list_get

! Return the next node after SELF

function list_next(self)
type(list_node_t), pointer :: self
type(list_node_t), pointer :: list_next
list_next => self%next

end function list_next

Although many additional list operations could be defined, we provide only a single



example list_insert procedure which inserts a new node after the current one.

I Insert a list node after SELF containing DATA (optional)
subroutine list_insert(self, data)

type(list_node_t), pointer :: self

integer, dimension(:), intent(in), optional :: data

type(list_node_t), pointer :: next
allocate(next)

if (present(data)) then
allocate(next%data(size(data)))
next%data = data

else
nullify(next%data)

end if

next%next => self%next
self%next => next

end subroutine list_insert

Finally, we provide a simple control program which illustrates how to initialize and
free the list and how to store and retrieve pointers to data_t objects using transfer.

program test_list
use generic_list
use data

implicit none

type(list_node_t), pointer :: list => null()
type(data_ptr) :: ptr

I Allocate a new data element
allocate(ptresp)
ptresp%sx = 2.7183

! Initialize the list with the first data element
call list_init(list, transfer(ptr, list_data))

print *, 'Initializing list with data:’, ptr%sp

! Allocate a second data element
allocate(ptrsp)
ptrepsx = 0.5772



! Insert the second into the list
call list_insert(list, transfer(ptr, list_data))

print *, ’'Inserting node with data:’, ptr%sp

! Retrieve data from the second node and free memory
ptr = transfer(list_get(list_next(list)), ptr)
print *, ’'Second node data:’, ptr%p

deallocate(ptr%p)

! Retrieve data from the head node and free memory
ptr = transfer(list_get(list), ptr)
print *, 'Head node data:’', ptr%p

deallocate(ptrsp)

! Free the list
call list_free(list)

end program test_list
The test program produces the following output:

Initializing list with data: 2.7183001
Inserting node with data: 0.57720000
Second node data: 0.57720000

Head node data: 2.7183001

4. CONCLUSION

The generic programming methods described in this paper provide a relatively simple
way to structure Fortran 95 modules and procedures that need to be used with data of
an unknown type. These methods are general and broadly-applicable to data structures
and procedures far beyond the simple linked list considered in this paper. In specific
applications, a few simple wrapper functions can be written for the required data types
so that the resulting interface is clean and simple, entirely avoiding direct use of transfer
by the user. Until the new language features of Fortran 2003 become more accessible,
generic Fortran 95 techniques such as these can provide much of the same convenience

and functionality at the cost of a slightly more complicated user interface.
REFERENCES

Hoare, C. A. R. (1961). Quicksort: Algorithm 64. Communications of the ACM 4, 321-322. [2]

Markus, A. (2001). Generic programming in Fortran go. ACM SIGPLAN Fortran Forum 20(3),

20—23. [2]



Markus, A. (2008). FLIBS - a collection of Fortran modules. http://flibs.sourceforge.net/.
Version 0.9. [2]

McCormack, D. (2005). Generic programming in Fortran with Forpedo. ACM SIGPLAN
Fortran Forum 24(2), 18-29. [2]

McGavin, P. and R. Young (2001). A generic list implementation. ACM SIGPLAN Fortran
Forum 20(1), 16—20. [2]

10


http://flibs.sourceforge.net/

	Introduction
	Pointers and the Transfer Intrinsic
	Implementation
	Conclusion

