
The Effects of Ties on Convergece in K-Modes

Variants for Clustering Categorical Data

N. Orlowski, D. Schlorff,
J. Blevins, D. Cañas, M. T. Chu∗, R. E. Funderlic†

N.C. State University
Department of Computer Science

June 29, 2004

Abstract

Clustering methods for categorical data can easily have ties. These
ties occur when an ambiguity arises in the process of executing an algo-
rithm. This paper identifies two types of ties and studies their effect on
the k-modes method for categorical data. Three variants of the k-modes
algorithm, each of which handles tie breaking and stopping criterion dif-
ferently, are compared. It is shown via simple yet subtly constructed
examples that the convergence and quality of results can be greatly af-
fected by how the ties are resolved. The notion of cluster death is also
discussed.

1 Introduction

Employing traditional methods such as k-means and spherical k-means [2], parti-
tional data clustering has typically focused on data sets which contain numerical
values [7]. More recently, considerable efforts have been on clustering data with
categorical or qualitative attributes. The k-modes algorithm [6] is an iterative
scheme that partitions categorical data vectors into homogeneous groups, called
clusters, based on a similarity measure. Apparently, the term “k-modes” was
coined by Huang [5], who adapted the method from a clustering method that
works on mixed categorical and numerical data [4, 6], originally conceived by
Ralambondrainy [9].

The main focus of the paper is an examination of how stopping criteria and
tie-breaking methods affect convergence of any k-modes variant. Two types of
ties are introduced and three variants of k-modes using different tie-breaking

∗Department of Mathematics, North Carolina State University, Raleigh, NC 27695-
8205(Chu@math.ncsu.edu) NSF grants: CCR-6204157, DMS-0073056

†Department of Computer Science, North Carolina State University, Raleigh, NC 27695-
8205(ref@csc.ncsu.edu)

1

policies are constructed to demonstrate the effects of those ties. We also in-
troduce ways to prevent the phenomenon of the so-called cluster death where
a cluster has no associated data vectors. The purpose of this paper is not to
present calculations on large data sets or to empirically evaluate a particular
variant but to provide an in-depth understanding of the specific effect that ties
have on convergence in any k-modes variant.

Let P denote a collection of categorical attributes. The attribute can be any
type of object, so long as any two attributes in P can always be compared to
determine whether or not they are the same. In practice, it is often the case
that observations of empirical data are ordered n-tuples with attributes from P.
For convenience, we denote such a categorical data vector x as a column vector
in the space Pm where m is the number of attributes comprising the m-tuple. A
given subset X of n data vectors in Pm can therefore be considered as an m×n
matrix with entries from P where the ordering of columns is immaterial

A k-means-like algorithm partitions a given set of data vectors in Pm, X, into
k sets or “clusters” X1, . . . , Xk, where k is the specified number of clusters. Each
cluster Xi is a collection of columns of X and has an associated mode(center)
vector ci, i = 1, . . . , k, that will be defined later. In order to classify data
into clusters, we need the notion of similarity. There are many ways to define
similarity with categorical data [10]. We will define the similarity function
s(x,y) between two categorical data vectors x and y as

s(x,y) := # of matches between components of x and y. (1)

Given any subset Z ⊂ X, we then define the total similarity t(Z,y) of a vector
y to the set Z as the sum of the similarities between y and each element in the
set Z, that is,

t(Z,y) :=
∑
zi∈Z

s(zi,y). (2)

Huang [6] defines the mode vector ci of a cluster Xi as the vector in Pm which
minimizes the dissimilarity with all vectors in the cluster Xi. In our context,
we equivalently define the mode vector ci of a cluster Xi as the vector that
maximizes the similarity in the cluster, that is,

ci := arg maxy∈Pmt(Xi,y). (3)

This can be equivalently thought of as minimizing the dissimilarity between
clusters. The relationship between similarity and dissimilarity can generally be
related by

d(x,y) = m− s(x,y), (4)

where m is the number of attributes in the categorical data vector and

d(x,y) := # of mismatches between components of x and y. (5)

Generally speaking, components of the mode vector ci can be calculated by
selecting the attribute that appears most frequently in each row of the vectors

2

in Xi. For example, if

Xi =
[

car car boat bike
bike plane train train

]
,

then

ci =
[

car
train

]
is the mode vector of Xi.

It is natural to define the overall objective function of a given partition
X1, . . . , Xk of X and a set of mode vectors c1, . . . , ck as the sum

T (X1, . . . , Xk, c1, . . . , ck) :=
k∑

i=1

t(Xi, ci). (6)

This value serves as a measurement of the coherence, or total similarity of the
current clusters in the data set X.

Given a data set X ⊂ Pm, the objective of a k-modes algorithm is to
maximize the coherence T (Xi, . . . , Xk, c1, . . . , ck) among all possible partitions
X1, . . . , Xk and their respective mode vectors c1, . . . , ck. In this paper, we re-
port our study showing that among the various existing k-modes algorithms,
the tie breaking mechanism may make a difference in their convergent behavior.

An example application studied by Morgan [8] might elucidate the basic
paradigm in a k-modes method.

Example 1.1 Consider the scenario that a company sells electronic cabinets
which contain m slots. When making an order for a cabinet, the customer
specifies a type of circuit board to be inserted into each slot. Each order can be
represented by a categorical data vector x whose components are selected from
the categorical attributes in P of board types. For simplicity, we shall assume
two different components with the same attribute are allowed. Assume that board
insertion is a time-consuming process. The company desires to minimize their
response time for business reasons. It is reasonable to analyze the past order
history and keep a number of pre-configured models (mode vectors) in stock. The
idea is that when an order comes in a pre-configured model can be modified to
match the order exactly with as few board modifications as possible. Let X ⊂ Pm

denote the collection of n past orders. By applying a k-modes algorithm to X,
k mode vectors can be obtained which serve as pre-configured models to reduce
total production time as much as possible.

Similar ideas can be found in market basket data analysis [12] where each
supermarket transaction is counted as a categorical data vector and clusters are
found for the purposes of market research. These paradigms should provide a
good vocabulary and be helpful in understanding the fundamental consequences
of ties. Most of the k-modes variants proposed in the literature either terminate
the iteration whenever a tie occurs or ignore the tie. It is our intention to study
tie-breaking mechanisms over categorical data more carefully and thoroughly in

3

this paper. This paper is organized as follows. We begin in section 2 with the
distinction between two different types of ties in any k-modes algorithm. How
these ties are broken affects the convergence behavior of a k-modes variant. To
demonstrate this idea, we introduce in section 3 three example variants of the
k-modes method. The specific effects of ties and stopping criteria on these three
k-modes variants are discussed in section 4 with examples. The notion of cluster
death is described in section 5.

2 Ties in k-modes Methods

Working with vectors of floating point numbers does not provide much of an
opportunity to encounter the ambiguity of ties because ties seldom occur in
floating point arithmetic (There is, of course, the remote possibility of inexact
ties caused by rounding errors, where .90005 = round(.900049)). With categor-
ical/qualitative data, however, ties are not rare occurrences. How a particular
k-modes variant deals with ties can affect the final results obtained. In any
k-modes algorithm, there are two places where ties are possible — these are
during mode calculation and while determining to which cluster a particular
vector should be partitioned. In this section, we are merely introducing the
notion of ties. For a better understanding of where ties fit into the greater
k-modes, refer to section 3

2.1 Ties in Mode Calculation

In any k-modes variant a mode must be computed for a set of categorical data
vectors. Due to the categorical nature of data in k-modes, there may be more
than one optimum c for a given set. We call this situation a mode tie, or a tie
in the mode operation. Note that the mean of a given set of values (if defined)
is unique, while the mode is not necessarily unique.

Example 2.1 Let the matrix

X =
[

car car
boat plane

]
denote a given set of two categorical data vectors. Trivially, possible mode vec-
tors would include [

car
boat

]
and

[
car

plane

]
.

While “car” is the only choice for the first component, we can make no definite
decision about whether to choose “boat” or “plane” for the second component of
c in the above example. Indeed, “boat” and “plane” are equally good choices for
the second component.

To expand on this point about mode ties, imagine the worst case where a
cluster of n data vectors has p distinct attributes at each component and each

4

attribute occurs with the same frequency. In this situation, each mode vector
could be obtained by breaking p ties in n ways and there would be np different
equally optimal mode vectors.

Example 2.2 If a set of data is represented by

X =
[

1 2 3
4 5 6

]
,

then there would be 32 possible ways to create a mode vector, all of which would
be equally optimal.

There are non-random ways to resolve mode ties, but that will be a topic
for further research. Some include using the last known unambiguous model.
Following most of the k-means variants proposed in the literature, we will assume
that mode ties are broken randomly, that is, a mode vector is randomly chosen
from the set of equally optimal mode vectors.

2.2 Ties in Cluster Assignment

Each iteration in a k-modes method consists of two basic steps, mode calculation
and cluster assignment. In the cluster assignment, data vectors are clustered
on the basis of their “closeness” to the mode vectors. In general, a data vector
is assigned to the cluster whose mode vector is most similar to that data vec-
tor. Ambiguity arises if that data vector is equally similar to more than one
mode vector. As such, there is the possibility of a tie occurrence in the cluster
assignment step.

Example 2.3 If

x =
[

car
boat

]
, c1 =

[
car

plane

]
, and c2 =

[
car

train

]
,

then
s(x, c1) = s(x, c2) = 1 match.

We call this situation an allocation tie. The clusters obtained are affected by
how such ties are broken and thus into which cluster x is assigned.

Depending on how these two types of ties are broken, the effects that these
ties can have on convergence are significant. We shall detail our studies in
section 4.

3 Variants of k-modes Methods

In partitional cluster analysis there exists a class of algorithms whose members
differ largely in the way the similarity between two data objects is measured
[1]. These algorithms include k-means [3], spherical k-means [2], k-modes and
k-prototypes [4, 6] and many others [9, 8]. Each algorithm can be considered as

5

a descendant of the general archetype of k-means-like algorithms in that each
produces a partitioning based on a given data set, a specified k, and a particular
similarity function.

For the purposes of this paper, we define a variant of k-modes by specify-
ing the stopping criterion and how ties are handled. We will examine three
variants of the k-modes algorithm in this section and use them as examples to
demonstrate the effect of ties later.

3.1 Cluster Variant

The first variant we will study is based on Huang’s original k-modes variant. We
borrow from Huang’s algorithm the way his variant breaks allocation ties and
the stopping criterion. However, we did not adopt Huang’s decision of when to
re-calculate mode vectors. Huang’s k-modes variant re-calculates mode vectors
every time a vector is moved. In contrast, our variant only calculates mode
vectors once per full iteration. We call this variant the cluster variant because
it terminates when all k clusters become invariant.

Algorithm 3.1 (Cluster k-modes Method) Given a set X of categorical
data vectors in Pm and a specified number k of desired clusters, do

1. Begin with an initial partition,

X = X
(0)
1 ∪X

(0)
2 ∪ · · · ∪X

(0)
k .

2. Update the modes of each cluster according to (3) to obtain

c(t)
1 , c(t)

2 , . . . , c(t)
k .

3. Re-test the similarity of all data vectors from cluster to cluster with each
mode vector in the following way. If a vector from X

(t)
i is found to be

strictly nearer to c(t)
j than to the current c(t)

i , reallocate that vector to the

cluster X
(t+1)
j to obtain a new partition

X = X
(t+1)
1 ∪X

(t+1)
2 ∪ · · · ∪X

(t+1)
k .

Notice that ties here are biased so that the mode of a data vector’s current
cluster is preferred.

4. Go back to Step 2 and repeat the iteration until no object has changed
cluster assignment after full cycle of the whole data set, that is,

X
(t+1)
i = X

(t)
i , for all i = 1, . . . , k.

6

3.2 Center Variant

The second algorithm, called the center variant, differs from the cluster variant
only in the stopping criterion.

Algorithm 3.2 (Center k-modes Method) Given a set X of categorical
data vectors in Pm and a specified number k of desired clusters, do

1. Begin with an initial partition,

X = X
(0)
1 ∪X

(0)
2 ∪ · · · ∪X

(0)
k .

2. Update the modes of each cluster according to (3) to obtain

c(t)
1 , c(t)

2 , . . . , c(t)
k .

3. Re-test the similarity of all data vectors from cluster to cluster with each
mode vector in the following way. If a vector from X

(t)
i is found to be

strictly nearer to c(t)
j than to the current c(t)

i , reallocate that vector to the

cluster X
(t+1)
j to obtain a new partition

X = X
(t+1)
1 ∪X

(t+1)
2 ∪ · · · ∪X

(t+1)
k .

As in the Cluster Variant, allocation ties here are biased so that the mode
of a data vector’s current cluster is preferred.

4. Go back to Step 2 and repeat the iteration until no mode vector has changed
upon re-calculation of centers after full cycle of the whole data set, that is,

c(t+1)
i = c(t)

i , for all i = 1, . . . , k.

Because of the biased ties that occur in the Cluster and Center variants, it is
possible to have a secondary type of allocation tie. This secondary type of tie
occurs when a data vector, x, is in the cluster whose mode is c3, but is closer to
two different modes, namely c1 and c2. The normal decision to bias x towards
its current cluster cannot be applied here as c1 and c2 are strictly better choices
than c3. So, as with the mode ties, for the purposes of this paper we will assume
such ties are broken randomly.

3.3 Coherence Variant

The third variant of the k-modes algorithm is analogous to Dhillon’s spherical
k-means algorithm discussed in [2], except that we are dealing with categorical
data and that the similarity is defined by the number of matches as in (5). The
resulting scheme is referred to as the coherence variant.

Algorithm 3.3 (Coherence k-modes Method) Given a set X of categorical
data vectors in Pm, a specified number k of desired clusters, and tolerance ε > 0,
do

7

1. Begin by specifying initial clusters.

X = X
(0)
1 ∪X

(0)
2 ∪ · · · ∪X

(0)
k .

2. Compute mode vector for each cluster according to (3) to obtain a mode
vector for each cluster,

c(t)
1 , c(t)

2 , . . . , c(t)
k .

3. Allocate each data vector from X to the cluster whose mode is most similar
to obtain the new clusters,

X = X
(t+1)
1 ∪X

(t+1)
2 ∪ · · · ∪X

(t+1)
k .

Break allocation ties, if any, randomly.

4. Go back to Step 2 and repeat the iteration until the change in the objective
function is less than a certain threshold, that is,

|T (X(t+1)
1 , . . . , X

(t+1)
k , c(t+1)

1 , . . . , c(t+1)
k)

− T (X(t)
1 , . . . , X

(t)
k , c(t)

1 , . . . , c(t)
k)| < ε, (7)

for ε ≥ 0 [2].

It is important to note that, unlike the cluster or the center variants where
each data vector stays in its cluster until a better cluster is found, the coherence
variant effectively dissolves the clusters during each iteration and re-allocates
every data vector in X. Additionally, the coherence variant terminates when
the absolute change in the objective function is below a certain threshold.

We choose to compare these three variants of the k-modes method because
they have different convergence criteria and handle ties differently during data
vector assignment. The variants are summarized in Table 1. We shall examine
the different behavior in the next few sections.

We stress that in the k-means-like methods designed for continuum data,
unique centers(means) can be obtained from clusters and vice versa in exact
arithmetic. This is not the case in k-modes methods, especially where there
are ties. Given k mode vectors, there is not necessarily a unique partitioning
corresponding to each mode vector. For this reason, we start each variant with
prescribed initial clusters.

We have provided figure 1 so that the reader can develop a further under-
standing of the three variants. To use this figure, choose a variant and iterate
per the algorithm corresponding to that variant, starting at node (a). All op-
tions for all variants are displayed in the figure. As you trace your route, the
places where ties occur and the consequences of how they are resolved will be-
come evident. The first 5 nodes (a-e) might be visited no matter what variant
is being used. However, in order to get to step (f), the allocation tie in (e) must
be broken randomly, i.e., the coherence variant must be used.

There are many important observations to be made here:

8

(a)
X1 X2

1 1 2 3 3 2
3 3 1 1 2 1

?

?

�
�

�	

@
@

@R

?

6

�
�

�	

�
�

��

@
@

@I

(b)
c1 X1 c2 X2

1 1 1 2 3 3 3 2
3 3 3 1 1 1 2 1

(c)
X1 X2

1 1 3 3 2 2
3 3 1 2 1 1

(d)
c1 X1 c2 X2

1 1 1 3 3 3 2 2
3 3 3 1 1 2 1 1

(e)
c1 X1 c2 X2

1 1 1 2 3 3 2 2
3 3 3 1 1 2 1 1

(f)
X1 X2

1 1 3 3 2 2
3 3 2 1 1 1

(g)
c1 X1 c2 X2

1 1 1 3 2 3 2 2
3 3 3 2 1 1 1 1

-

Figure 1: Sample run of a generic k-modes variant (ties are in bold)

9

Variant Stopping Criterion Mode Ties Allocation Ties

Cluster X
(t+1)
i = X

(t)
i , i = 1, . . . , k random biased

Center c(t+1)
i = c(t)

i , i = 1, . . . , k random biased
Coherence |T (t+1) − T (t)| < ε random random

Table 1: Comparison of k-modes Variants.

1. At (c), the first component of the mode vector must be selected randomly
from {3, 2}.

2. At (d), the only option is to return to (c) so the mode tie remains.

3. The step from (c) to (e) occurs if the tie in (c) is randomly selected to be
{3}.

4. From (e), we can repartition two ways. If we use the Cluster/Center
variants with biased allocation ties, we must go back to (c). If we allow
random allocation ties, we might advance to (f).

5. If random allocation ties are allowed, we can go from (g) to (c).

6. The objective function can be calculated only when mode vectors are
defined. Notice that the objective function is the same at (e), (d), and
(g).

Possible termination criteria:
Depending on which variant is chosen, its stopping criterion will be met if the

following nodes are visited in order. This list is not necessarily comprehensive.

• Cluster Variant:

(c) (d) (c)

(c) (e) (c)

(f) (g) (f)

• Center Variant

(d) (c) (d)

(e) (c) (e)

• Coherence Variant

(c) (d) (c)

(c) (e) (c)

(c) (e) (c)

(e) (g) (c)

10

4 The Effects on Convergence

We now begin to examine how the specific allocation tie resolution policies and
the stopping criterion of each variant affect the convergence of each of the three
variants. We wish to highlight the effect on the quality of results and robustness
of convergence by simple examples. Despite its simplicity, the concern addressed
in this section seems to have been overlooked in the literature.

4.1 Convergence of the Coherence Variant

In the coherence variant, if a data vector is equally close to more than one mode
vector, that data vector is allocated to a cluster selected randomly from those
whose modes are equally close to the object. This randomness can create an
interesting anomaly in the ascent of the objective function.

Observation 4.1 It is possible for the objective function to remain constant
from one iteration to the next during the course of the algorithm, only to have
an increase on the third iteration.

A simple example can best illustrate the scenario. We caution readers not
to underestimate the simplicity of the following example, as ties are not rare
occurrences in categorical data.

Example 4.1 Consider the data set

X =
[

1 2 1 2
2 1 2 1

]
where we use integers to describe the different categorical objects. One possible
initial partitioning is

X
(0)
1 =

[
1 2
2 1

]
and X

(0)
2 =

[
1 2
2 1

]
.

Clearly there are mode ties in both X
(0)
1 and X

(0)
2 . It is possible that the mode

vectors

c(0)
1 =

[
1
1

]
and c(0)

2 =
[

2
2

]
are selected, leading to

T (X(0)
1 , X

(0)
2 , c(0)

1 , c(0)
2) = 4.

With these initial mode vectors, we go on to Step 3 in Algorithm 3.3 and repar-
tition X. Keeping in mind that because allocation ties are randomly allocated,
this partitioning is not unique given c(0)

1 and c(0)
2 . It is possible that

X
(1)
1 =

[
1 2
2 1

]
and X

(1)
2 =

[
2 1
1 2

]

11

are selected and, by the random selection on the mode ties again, the mode
vectors are chosen to be

c(1)
1 =

[
2
2

]
and c(1)

2 =
[

1
1

]
.

It follows that
T (X(1)

1 , X
(1)
2 , c(1)

1 , c(1)
2) = 4.

Because the values of the objective function have not changed, convergence
would be assumed using Algorithm 3.3. However, suppose we were to continue
with another iteration. It is possible to increase the value of the objective func-
tion substantially and, hence, obtain a better clustering. Indeed, it is entirely
possible that by random selection in breaking the allocation tie in Step 3 we end
with the partition

X
(2)
1 =

[
2 2
1 1

]
and X

(2)
2 =

[
1 1
2 2

]
.

This time, the new mode vectors will certainly be

c(2)
1 =

[
2
1

]
and c(2)

2 =
[

1
2

]
.

It follows that
T (X(2)

1 , X
(2)
2 , c(2)

1 , c(2)
2) = 8,

the maximal achievable objective value.

In the above example, the coherence variant would have stopped after the
first iteration by the stopping criterion. However, as we have demonstrated,
if we continue the iteration, we can further maximize the objective function.
What is really happening between the first and second iterations is that at least
one data vector swaps between clusters whose mode vectors are equally similar
to that data vector. This swap is advantageous to the next iteration.

Dhillon has shown that Algorithm 3.3 applied to non-categorical data will
converge, but acknowledges that the clusters may not [2]. The idea of Dhillon’s
proof can be easily applied to prove the convergence of the coherence variant. On
the other hand, we have shown above that just because an iterative clustering
procedure meets its stopping criteria does not guarantee that the algorithm has
reached a local optimum. Another example can be found in [11]. The situation
described in [] is an allocation tie and is resolved by resorting to what is called
fuzzy clustering, but that situation might also be solved by imparting some sort
of allocation tie resolution policy.

In the coherence variant, it is precisely because of random tie-breaking during
re-clustering that the anomaly in the previous example occurs. There are other
ramifications of random tie breaking, including what we call Cluster Death which
is discussed in section 5.

12

It is important to realize that the nature of categorical data makes it possible
for the objective function to stay exactly constant from one iteration to the next.
For continuum data such as normalized data vectors described by Dhillon [2], it
is far less likely that the objective function will stay exactly constant from one
iteration to the next.

4.2 Convergence of the Cluster Variant

In contrast to the coherence variant, Step 3 in the cluster variant effectively
biases allocation ties such that if an object is equally close to two centers, that
object stays in its current cluster. The clusters of this variant have been proven
to converge by Morgan [8]. The effect of the tie-breaking mechanism specified
in Step 3 of Algorithm 3.1 on the iterative path is that all else being equal, that
is, no mode ties and given the same starting conditions, the cluster variant will
always iterate through the same path and produce the same final clusters.

We pointed out earlier that one drawback to the coherence k-modes variant
is that the clusters may not converge. The same behavior has been observed
in the context of k-means [2] applied to continuum data. As it may be more
desirable in practice to guarantee convergence of clusters rather than to obtain
an optimal objective value, it is tempting to bias allocation ties in a k-means
implementation for continuum data as in the cluster variant for categorical data.
In exact arithmetic, the convergence of such a scheme can be proved in exactly
the same way as that done in [8]. However, we hasten to point out that the
finite precision of a computer can bring up another concern.

Observation 4.2 Roundoff error can cause an anomaly where a data vector
indefinitely swaps between two clusters, thus never satisfying the stopping crite-
rion.

Again, we use a simple example to illustrate our point.

Example 4.2 Suppose we have a computer with two digit precision to operate
on the data set

X = [.65, .67, .68] .

Assume that the initial clusters are

X
(0)
1 = [.65, .67] and X

(0)
2 = [.68] ,

and that the machine does rounding.
The new centers(means) for each cluster are obtained by averaging the ele-

ments within the cluster. However we must keep in mind that we only have two
digits of precision, so

c(0)
1 =

round(.65 + .67)
2

=
round(1.32)

2
=

1.3
2

= .65 and c(0)
2 = .68.

The next iteration produces the clusters

X
(1)
1 = [.65] and X

(1)
2 = [.67, .68] .

13

Again we re-calculate the means and obtain

c(1)
1 = .65 and c(1)

2 =
round(.67 + .68)

2
=

round(1.35)
2

=
1.4
2

= .7.

With these new means, we re-cluster the data set, only to realize that we are
back to where we started.

X
(2)
1 = [.65, .67] and X

(2)
2 = [.68] .

In this example, at least one cluster will change at every iteration, so convergence
of the clusters will never be achieved. A more complicated example can be given
for a binary computer with standard rounding using the principle that a very
small number plus a very large number will return the larger one in finite binary
arithmetic.

4.3 Convergence of the Center variant

Recall that the center variant handles allocation ties in exactly the same way
as the cluster variant. The only difference comes in the stopping criterion. The
sequence of clusters will still converge in the center variant in the same way as
in the cluster variant.

Observation 4.3 Because of the possibility of mode ties, the convergence of
clusters does not necessarily imply the convergence of modes.

We have demonstrated in section 4.1 that a mode vector is not necessarily
unique to a given cluster and that a cluster is not unique to a particular mode
vector. This presents a problem in the convergence of the modes of this variant.
Because it is often possible to calculate an arbitrary number of modes with the
same set X and never have two consecutive equal modes, convergence of modes
cannot be proved.

5 Cluster Death

In all three variants of the k-modes method, it is essential to re-assign data
vectors into clusters at every iteration. Note that k, the number of clusters, is
predetermined. During the process, however, the iteration may break down due
to a situation which we refer to as the cluster death.

Observation 5.1 There is a possibility that upon data vector assignment, no
vector is assigned to a particular cluster. The mode of this cluster is therefore
indeterminate.

In this section we want to show that the way in which allocation ties are
broken and the decision of when to calculate modes can allow or disallow cluster
death. Again, we will use the coherence and the cluster k-modes variants to
describe how this is done.

14

We first consider the cluster death in the coherence variant. Recall that
the coherence variant assigns allocation ties randomly. The following example
shows how random assignment can lead to an empty cluster. Again, we caution
not to underestimate the importance of this simple example.

Example 5.1 If

X1

[
1 1
2 2

]
and , X2

[
1 1
2 2

]
,

then,

c1

[
1
2

]
and c2 =

[
1
2

]
.

The next partitioning, since assigned randomly might be

X1

[
1 1 1 1
2 2 2 2

]
and X2

[]
.

In the final iteration of this example, X2 has an indeterminate mode vector,
so continuation of the algorithm is less meaningful. What cluster death most
likely suggests is that the predetermined k is too large. There are some simple
ways of correcting this situation, such as retaining the last relevant mode or
generating a random mode vector. However, be aware that the cluster death
indicated above represents the data set more truly. We also wish to suggest
that there are benefits to cluster death as it may aid in improving the selection
of the k value.

Cluster Death is also possible in the cluster variant due to mode ties.

Example 5.2 Suppose we are given the following partition of X,

X1 =
[

1 2
3 4

]
, X2 =

[
1 2
3 4

]
, and X3 =

[
1 2
3 4

]
.

The mode vectors might be

c1 =
[

1
3

]
, c2 =

[
2
4

]
, and c3 =

[
2
3

]
,

respectively. The subsequent iteration would produce the clusters,

X1 =
[

1 1 1
3 3 3

]
, X2 =

[
2 2 2
4 4 4

]
, and X3 =

[]
.

We point out that in Huang’s k-modes algorithm, the modes are updated
each time a data vector changes clusters, not simply at each iteration. This
modification prevents cluster death from occurring as it guarantees that a cluster
with only one data vector has a mode that is identical to that data vector. There
are two main aspects of Huang’s k-modes algorithm that make it immune to
cluster death:

15

1. Biased allocation tie resolution.

2. Recalculating the modes of the destination and origin clusters each time
a data vector is re-allocated.

Cluster death can be prevented in any k-modes algorithm if these two steps are
taken.

6 Conclusion

The mode calculation and the vector assignment are the two major compo-
nents in most k-modes variants. In both operations the issue of ties arises
frequently when dealing with categorical data. Using three variants of the k-
modes algorithm, each of which handles ties and stopping criteria differently, we
demonstrate the effect of the tie-breaking policy on the behavior of the underly-
ing method. Convergence for the cluster variant and the coherence variant has
been known in the literature. However, we illustrate in some interesting details
the effect including premature termination, cluster death, and infinite cycle.

7 Acknowledgments

Thanks to the following for their correspondence and assistance in writing this
paper:

• I. Dhillon

• S. Morgan, Y. Fahti

• Z. Huang

• Anonymous Reviewers

Special thanks to the National Science Foundation for their generous grant.

References

[1] D. Cañas, D., M. Chu, and R. Funderlic: 2004, ‘Unmasking the k-Means
Clustering Method(Generalizations and Unification of Clustering Meth-
ods)’. Preprint.

[2] Dhillon, I. and D. Modha: 2001, ‘Concept Decompositions for Large Sparse
Text Data Using Clustering’. Machine Learning 42, 143–175.

[3] Dubes, R. and A. Jain: 1975, ‘Clustering Techniques: The users Dilemma’.
Pattern Recognition 8.

16

[4] Huang, Z.: 1997a, ‘Clustering Large Data Sets with Mixed Numeric and
Categorical Values’. In: Proceedings of the First Pacific-Asia Conference
on Knowledge Discovery and Data Mining, pp.21-34, 1997.

[5] Huang, Z.: 1997b, ‘A fast clustering algorithm to cluster very large cate-
gorical data sets in data mining’. SIGMOD Workshop on Research Issues
on Data Mining and Knowledge Discovery (SIGMOD-DMKD’97), Tucson,
Arizona.

[6] Huang, Z.: 1998, ‘Extensions to the k-Means Algorithm for Clustering
Large Data Sets with Categorical Values’. Data Mining and Knowledge
Discovery 2(3), 283–304.

[7] Jain, A., M. Murty, and P. Flynn: 1999, ‘Data clustering: a review’. ACM
Computing Surveys 31(3), 264–323.

[8] Morgan, S. and Y. Fathi: 2001, ‘Algorithms for the Model Configuration
Problem’. IIE Transactions 36, 169–180.

[9] Ralambondrainy, H.: 1995, ‘A conceptual version of the K-means algo-
rithm’. Pattern Recognition Letters 16.

[10] Ryu, T. and C. Eick: 1998, ‘A Unified Similarity Measure for Attributes
with Set or Bag of Values for Database Clustering’. Sixth International
Workshop on Rough Sets, Data Mining and Granular Computing (RSDM-
GrC’98).

[11] S. Selim, S. and M. Ismail: 1984, ‘K-means Type Algorithms: A Gen-
eralized Convergence Theorem and Characterzation of Local Optimality’.
IEEE Transactions on Pattern Analysis and Machine Intelligence 6.

[12] Wang, K., C. Xu, and B. Liu: Kansas, Missouri,1999, ‘Clustering Transac-
tions Using Large Items’. In: Proc. ACM CIKM. pp. 483–490.

17

