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Abstract. Many semiparametric fixed effects panel data models, such as binary choice
models and duration models, are known to be point identified when at least one regressor
has full support on the real line. It is common in practice, however, to have only discrete
or continuous, but possibly bounded, regressors. This paper addresses identification and
inference for the identified set in such cases, when the parameters of interest may only be
partially identified. We first develop a set of general results for criterion-function-based
inference in partially identified models which can be applied to both regular and irregular
models. We then apply these general results to several specific models. In the fixed effects
binary choice panel data model, we obtain a sharp characterization of the identified set
and propose a consistent set estimator, establishing its rate of convergence under different
conditions. Rates arbitrarily close to n1/3 are possible when a continuous regressor
is present. When all regressors are discrete the estimates converge arbitrarily fast to
the identified set. We also propose a subsampling-based procedure for constructing
confidence regions. Finally, we carry out a series of Monte Carlo experiments to illustrate
and evaluate the proposed procedures. We also consider extensions to other fixed effects
panel data models such as binary choice models with lagged dependent variables and
duration models.
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1. Introduction

This paper develops set estimators for potentially irregular models in which the param-
eters of interest are partially identified. It provides general conditions for establishing
consistency and rates of convergence and considers methods for constructing confidence
regions for the identified set. These results are then applied to panel data binary choice
and duration models with fixed effects under weak semiparametric assumptions, a class
of models which motivates our analysis.

The literature on estimation of partially identified models has primarily focused on
regular models, such as moment condition models, for which estimators of the identified
set exist that are essentially

√
n-consistent1 set estimators. Our results extend the criterion-

function-based framework for set inference developed by Chernozhukov, Hong, and Tamer
(2007), allowing estimation of parameter sets in a more general class of models in which
non-standard rates of convergence may arise. This includes models such as those studied
by Kim and Pollard (1990) in which a sharp-edge effect leads to cube-root convergence.
We show that a similar mechanism drives what amounts to cube-root convergence in a
large class of partially identified models as well. We also describe a class of models in
which a particular type of discontinuity in the limiting objective function results in an
arbitrarily fast rate of convergence.

These general results are motivated by the case of panel data binary choice and duration
models with fixed effects. Without making any additional parametric assumptions, we
analyze these models in the absence of a full-support condition which has been widely
used in the literature to guarantee point identification (Manski, 1975, 1985; Han, 1987;
Horowitz, 1992; Abrevaya, 2000; Chen, 2002). We illustrate our general results by proposing
set estimators for these models, which are based on rank conditions similar to those used
in maximum score estimation, and showing that the estimators are consistent for the
identified set at non-standard rates. Existing conditions in the literature are not well-suited
for analyzing these models because of their irregular features. We also carry out a series
of Monte Carlo experiments using these models in order to provide evidence for our
theoretical findings.

This paper contributes to several areas of the econometrics literature including the
growing literature on partial identification, the long literature on semiparametric estimation
binary choice and transformation models, and an emerging literature on estimating
semiparametric models with limited-support regressors. Work on criterion-function-based
estimation and inference in partially identified models started with Manski and Tamer
(2002), who analyzed a semiparametric binary choice model with interval-valued data

1That is, they can achieve rates of convergence arbitrarily close to
√

n.
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under a conditional quantile restriction. They derived the sharp identified set for the model,
proposed a set estimator, defined as an appropriately-chosen contour set of a modified
maximum score objective function, and showed that it was consistent. Chernozhukov
et al. (2007) generalized this approach and developed a broad framework for criterion-
function-based estimation of partially identified models. They established conditions for
consistency and rates of convergence of estimators in this class along with methods for
constructing confidence regions for the identified set using subsampling. Romano and
Shaikh (2010) further explored subsampling-based inference in partially identified models
while Bugni (2008) introduced a bootstrap procedure.

Confidence regions can also be constructed via set expansion, for example, when the
identified set is an interval on the real line (Horowitz and Manski, 2000; Imbens and
Manski, 2004). Beresteanu and Molinari (2008) extended this method to more general
settings and develop inference procedures based on the theory of random sets for partially
identified models where the identified set can be expressed as the Aumann expectation of
a set valued random variable.

Although this paper focuses on inference for the identified set, Θ0, one may also be
interested in inference about individual points within the identified set, including the true
parameter θ0. This distinction was raised by Imbens and Manski (2004), who proposed
confidence regions for θ0 in the case where Θ0 is an interval whose endpoints can be
estimated. Stoye (2009) later observed that the conditions of Imbens and Manski (2004)
imply the existence of a superefficient estimator of the width of the identified interval and
proposed alternative conditions to avoid this implicit assumption. Although some of the
estimators proposed in this paper are indeed superefficient, this arises due to the inherent
properties of the model, rather than as an implicit assumption. Romano and Shaikh (2008)
also showed that subsampling can be applied, uniformly, in the criterion-function-based
framework to construct confidence sets for individual elements of Θ0.

There are numerous other areas where partially identified econometric models have
arisen including games with multiple equilibria (Tamer, 2003; Andrews, Berry, and Jia, 2004;
Pakes, Porter, Ho, and Ishii, 2006; Aradillas-Lopez and Tamer, 2008; Ciliberto and Tamer,
2009; Beresteanu, Molchanov, and Molinari, 2009) and models characterized by conditional
moment inequalities (Khan and Tamer, 2009; Kim, 2009; Andrews and Shi, 2009). See
Manski (2003) and Tamer (2009) for surveys of partial identification in econometric models.

In the context of the specific models we consider, our work is also related to the
literature on nonlinear semiparametric panel data models, particularly the work of Manski
(1987) on the static fixed effects model and Honoré and Kyriazidou (2000) for dynamic
models. Our characterizations of the identified sets in the models we consider are based in
part on known necessary conditions for point identification established in these papers,
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however, establishing sharpness in partially identified models requires additional work.
This paper is also related to a growing literature concerned with semiparametric

estimation of models with limited support regressors, typically involving either discrete
or interval-valued regressors. In terms of cross-sectional models, Bierens and Hartog
(1988) showed that there are infinitely many single-index representations of the mean
regression of a dependent variable when all covariates are discrete. Horowitz (1998)
discussed the generic non-identification of single-index and binary response models with
only discrete regressors, a result which serves to motivate our analysis. Manski and Tamer
(2002) and Magnac and Maurin (2008) considered partial identification and estimation of
binary choice models with an interval-valued regressor. Honoré and Lleras-Muney (2006)
estimated a partially identified competing risk models with interval outcome data and
discrete explanatory variables. Komarova (2008) proposed consistent estimators, based on
a linear programming procedure, of the identified set in a cross-sectional binary response
model with discrete regressors. In this paper, we analyze a panel data version of this model
with both discrete and continuous regressors and determine the asymptotic properties of
the corresponding set estimators.

Finally, other authors have also considered partial identification in panel data models,
but with different quantities of interest. In particular, Honoré and Tamer (2006) analyzed
dynamic random effects panel data models and discuss how to calculate the identified
set using minimum distance, maximum likelihood, and linear programming methods.
More recently, Chernozhukov, Fernández-Val, Hahn, and Newey (2009) derive bounds
on marginal effects in nonlinear panel models with discrete regressors and Rosen (2009)
considers partial identification in fixed effects panel data models under conditional quantile
restrictions.

The remainder of this paper is organized as follows. In Section 2, we present an
overview of our main results and provide examples based on the specific models that moti-
vate our analysis. Section 3 contains our main results on consistency, rates of convergence,
and confidence regions in general models, with more practical sufficient conditions given
in Section 4. We apply these results to several specific fixed effects panel data models in
Section 5. The results from a series of Monte Carlo experiments based on these models are
presented in Section 6. Finally, Section 7 concludes.

2. Overview of the Main Results

In a broad sense, this paper concerns econometric models characterized by a finite vector
of parameters θ which lie in some parameter space Θ ⊂ Rk. Although our particular
focus is on semiparametric models with infinite-dimensional components ψ ∈ Ψ, they are
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not of interest themselves. For example, ψ might include unknown functionals such as
the distribution of disturbances in a particular model. Let P denote the data generating
process, the true distribution of observables, and suppose that the model is well-specified
in the sense that there exist primitives (θ0, ψ0) such that Pθ0,ψ0 = P. Both θ0 and ψ0 are
unknown to the researcher, but we shall focus on the case where θ0 is of primary interest.

A model is point identified if θ0 is the only element of Θ such that the model would
be consistent with the population distribution P for some ψ ∈ Ψ. On the other hand, the
model is partially identified if there are multiple elements θ ∈ Θ that could have generated
P in the sense that there is some ψ such that Pθ,ψ = P. The set of all such θ is the identified
set and is denoted by Θ0. Formally, Θ0 depends on P and is defined as

(1) Θ0(P) =
{

θ ∈ Θ : ∃ψ ∈ Ψ such that Pθ,ψ = P
}

.

We will simply write Θ0 when the context is clear, with the dependence on P assumed.
Note that this definition encompasses point identification, since Θ0 may be a singleton,
with consistent point or set estimators converging in probability to the same singleton.

Our leading example, which motivates the general results obtained throughout the
paper, is the basic panel data binary choice model with fixed effects, estimated under only
weak semiparametric assumptions.

Example 1 (Fixed Effects Binary Choice Model). Suppose that for each period t =

0, . . . , T − 1, we observe a binary response generated according to the model

yt = 1{x′tβ + c + ut ≥ 0},

where xt is a vector of explanatory variables, c is an unobserved individual-specific
effect, and ut are time-varying unobserved disturbances. Here, 1{·} denotes the indicator
function, equal to one when the event {·} is true and zero otherwise. The distribution of c
is unrestricted. We make the standard assumption that ut is stationary conditional on x
and c, but allow ut to be serially dependent. The only finite-dimensional parameters of
interest here are the index coefficients β. Manski (1987) showed that when T = 2, if at
least one component of x1 − x0 has full support on R, then the model is point identified.
Without this assumption, which fails if all regressors have finite or bounded support, the
model is only partially identified (Horowitz, 1998).

This paper focuses on set inference in models where the identified set is characterized
by some criterion function Q(θ). Let Θ1 ≡ arg maxΘ Q denote the set of maximizers of
Q. Using the analogy principle, we will use the finite sample objective function Qn(θ)

to obtain a set estimator Θ̂n for Θ1. Although we state our results in terms of Θ1 for
generality, in all cases we consider either Θ1 is a sharp characterization of the identified
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set (Θ0 = Θ1) or it is known to contain it (Θ0 ⊆ Θ1). Our main general results concern
the consistency of Θ̂n and its rate of convergence as well as methods for constructing
confidence regions for Θ1 with some prespecified coverage probability.

Example 2 (Objective Function). Returning to the model of Example 1, for T = 2, Manski
(1987) showed that the conditional maximum score objective function,

Q(θ) = E[(y1 − y0) · sgn((x1 − x0)
′β)],

can be maximized to consistently estimate θ. In Section 5, we show that this function
also provides a sharp characterization of the identified set in the model without the full
support assumption. The finite-sample analog objective function is

Qn(θ) =
1
n

n

∑
i=1

(yi1 − yi0) · sgn((xi0 − xi1)
′β).

The analogy principle suggests estimating Θ1 using the set of maximizers of the sample
objective function Qn. However, in general, taking only the set of maximizers may result
in an inconsistent estimator. Instead, we analyze a class of estimators defined in terms of
contour sets of Qn. Let Cn(τn) denote such a contour set, defined as

(2) Cn(τn) ≡
{

θ ∈ Θ : Qn(θ) ≥ sup
Θ

Qn − τn

}
,

where τn is a non-negative slackness sequence which converges zero in probability. Esti-
mators of this form were introduced by Manski and Tamer (2002) and have been used by
Chernozhukov et al. (2007), Romano and Shaikh (2010), Romano and Shaikh (2008), Bugni
(2008), and Kim (2009).

To discuss notions of convergence and consistency, we must be precise about which
metric space we are working in. We define convergence in terms of the Hausdorff distance, a
generalization of Euclidean distance to spaces of sets. Let (Θ, d) be a metric space where d
is the standard Euclidean distance. For a pair of subsets A, B ⊂ Θ, the Hausdorff distance
between A and B is

(3) dH(A, B) = max

{
sup
θ∈B

ρ(θ, A), sup
θ∈A

ρ(θ, B)

}
,

where ρ(θ, A) ≡ infθ̃∈A d(θ, θ̃) is the shortest distance from the point θ to the set A.
Intuitively, the Hausdorff distance between A and B is the farthest distance between an
arbitrary point in one of the sets to the nearest neighbor in the other set.

In Theorem 1 of Section 3, we provide conditions on Q, Qn, and the sequence τn to
ensure that Θ̂n ≡ Cn(τn) is consistent for Θ1. In particular, we require Qn to converge
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uniformly to Q in probability at a known rate bn and that the sequence τn approaches zero
in probability at a rate slower than that at which bn approaches infinity (i.e., τn

p→ 0 and
bnτn

p→ ∞).

Example 3 (Consistency). For the model of Example 1, we show that that Qn converges
uniformly in probability to Q at the rate bn = n1/2. Therefore, for slackness sequences
such that n1/2τn

p→ ∞, Θ̂n will be consistent for Θ0. One valid choice of the slackness
sequence is τn ∝

√
ln n/n. In general, however, we can choose τn to be a sequence that

converges to zero at a rate arbitrarily close to, but slower than, n1/2.

The rate of convergence of Θ̂n to Θ1 is shown to depend on the shape of the objective
function near the identified set. We show that if Qn can be bounded in probability from
above by a polynomial in ρ(θ, Θ1) outside of a shrinking neighborhood of Θ1, then the rate
of convergence is polynomial. The particular rate depends on the degree of the bounding
polynomial, γ1, and the rate at which the neighborhood shrinks, bγ2

n , where γ1γ2 ≥ 1.
When this condition holds, Theorem 3 establishes that dH(Θ̂n, Θ1) = Op(τ

γ2
n ). So the rate

depends on γ1, γ2, and the slackness sequence, τn, which, as we saw above, is in turn
restricted by the rate of uniform convergence, bn.

In an interesting extreme case, including many models with discrete regressors, we
show that if Q has a discontinuity at the boundary of Θ1 (for example, when Q is a
step function) then Θ̂n converges arbitrarily fast to Θ1. The following example illustrates
applications of both of these results.

Example 4 (Rates of Convergence). In the model of Example 1, when at least one compo-
nent of x1− x0 is continuous, but potentially bounded, we can show that Qn is bounded in
probability by a second-order polynomial in ρ(θ, Θ1) outside of an O(n−1/3) neighborhood
of Θ1. That is, γ1 = 2 and γ2 = 2/3.

Theorem 3 establishes that in this case the rate of convergence of Θ̂n to Θ1 can be
made arbitrarily close to n1/3, which is the rate of convergence of the maximum score
estimator in the point identified case. The exact rate depends on the particular choice of
the slackness sequence τn.

On the other hand, when all regressors are discrete, the limiting objective function is a
step function, with a nonzero jump at the boundary of the identified set. This function
satisfies the conditions of Theorem 2 which states that the rate of convergence is arbitrarily
fast, or equivalently, Θ̂n equals Θ1 with probability approaching one.2

Finally, we also discuss methods for constructing confidence regions for Θ1. In the case
of smooth models, such as the model of Example 1 with continuous regressors, existing

2See Lemma 9 in the appendix for a formal statement of this equivalence.
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procedures from the literature can be used (Chernozhukov et al., 2007; Romano and Shaikh,
2010). In models with discontinuous limiting objective functions, such as the step function
encountered in Example 4, we provide conditions under which a subsampling procedure
can be used to obtain conservative confidence regions with asymptotic coverage probability
greater than 1− α. We also provide an alternative characterization of confidence regions
in this case which shows that any sequence of sets with this confidence property must
eventually contain Θ̂n with probability at least 1− α. This result is confirmed by our
Monte Carlo experiments, which provide evidence that for large n, the confidence regions
obtained via subsampling are equal to set estimates Θ̂n.

3. Estimation and Inference in General Models

This section develops conditions under which the sequence of set estimates Θ̂n converges
in probability to Θ1 in the Hausdorff metric. We derive the rate of convergence of this
sequence under two different conditions on the curvature of the objective function and
then discuss methods for constructing confidence regions which cover Θ1 with some
prespecified probability. All proofs are reserved for Appendix B.

3.1. Consistency

Let Bc denote the complement of a set B in Θ. In a slight abuse of notation, we write
Bε ≡ {θ ∈ Θ : ρ(θ, B) < ε} to denote an ε-expansion of a set B ⊆ Θ. The following
conditions are required for consistency, as established by the theorem which follows.

Assumption A1. Θ is a nonempty, compact subset of Rk.

Assumption A2. There exists a function Q : Θ→ R such that for all ε > 0, there exists a
δε > 0 such that supΘ\Θε

1
Q ≤ supΘ Q− δε, where Θ1 ≡ arg maxΘ Q.

Assumption A3. There exists a real-valued function Qn(θ) and a sequence bn → ∞ such
that supΘ |Qn −Q| = Op(1/bn).

Assumptions A1 and A3 are the standard compactness and uniform convergence
conditions for consistency of M-estimators for singletons. Assumption A2 is a regularity
condition which requires the population objective function to have a well-separated
maximum. This serves to rule out pathological cases that can arise in the absence of
continuity. It plays the role of the identification condition and is satisfied, for example,
when Q is either continuous or a step function.
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Theorem 1 (Consistency). Suppose that Assumption A1–A3 hold and let τn be a nonnegative
sequence of random variables such that τn

p→ 0. Then, supθ∈Θ̂n
ρ(θ, Θ1)

p→ 0. Furthermore, if

bnτn
p→ ∞, then limn→∞ P(Θ1 ⊆ Θ̂n) = 1 and dH(Θ̂n, Θ1)

p→ 0.

Note that the first conclusion of Theorem 1 actually holds without the slackness
sequence: Θ̂n becomes arbitrarily close to being a subset of Θ1 in probability for any
sequence τn = op(1), including τn = 0. The slackness sequence is introduced to ensure
that the converse holds, that Θ̂n covers Θ1 in probability, by slightly expanding the contour
sets by an amount which becomes negligible as n → ∞. By expanding it at the right
rate—with τn converging to zero in probability, but not faster than 1/bn—we ensure that
Θ̂n is just large enough to cover Θ1 with probability approaching one. Combining these
two results yields consistency in the Hausdorff metric.

3.2. Rates of Convergence

The rate of convergence of the Hausdorff distance dH(Θ̂n, Θ1) is the slowest rate at which
the component distances, supθ∈Θ1

ρ(θ, Θ̂n) and supθ∈Θ̂n
ρ(θ, Θ1), converge to zero. The

second part of Theorem 1 establishes that with only Assumptions A1–A3, the first distance
converges arbitrarily fast in probability, since it eventually equals zero. In what follows,
we consider two different shape restrictions on Q and Qn which can be used to determine
the rate of convergence of the second distance, which determines the overall rate.

In particular, we show that when Q has a discontinuity at the boundary of Θ1, then
Θ̂n converges arbitrarily fast in probability to Θ1. On the other hand, when Qn(θ) is
stochastically bounded from above by a polynomial in ρ(θ, Θ1) outside of a shrinking
neighborhood of Θ1, we show that the rate of convergence depends on the curvature of
the bounding polynomial, the rate at which the neighborhood shrinks, and the rate at
which τn converges to zero.

Assumption A4. There exists a δ > 0 such that Q(θ) ≤ supΘ Q− δ for all θ ∈ Θc
1.

Theorem 2 (Rate of Convergence with a Constant Majorant). Suppose that Assumptions
A1–A4 hold. If τn

p→ 0 and bnτn
p→ ∞, then Θ̂n = Θ1 with probability approaching one.

Thus, when Q exhibits a discrete jump at the boundary of the identified set, Θ̂n

converges arbitrarily fast to Θ1. That is, for any sequence rn, including powers of n and
exponential forms, rndH(Θ̂n, Θ1)

p→ 0.3 We refer to Assumption A4 as a constant majorant
condition. As we will see in Section 5, this condition is satisfied when the regressors in the
binary choice model of Example 1 have finite support.

3See Lemma 9 in Appendix A for a proof that these two statements are equivalent in this setting.
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Intuitively, under the conditions of Theorem 2, with probability approaching one we
are able to perfectly distinguish which values of θ belong to Θ1. This happens because Qn

is converging uniformly to Q at a rate that’s faster than the rate at which τn approaches
zero, while at the same time τn will eventually become smaller than δ, the size of the
discrete jump. The result is that the contour sets Cn(τn) become identically equal to Θ1.

Next we consider models for which Qn satisfies a polynomial curvature condition.

Assumption A5. There exist positive constants (δ, c0, c1, γ1, γ2) with γ1γ2 ≥ 1 such that
for any ε ∈ (0, 1) there are (cε, nε) such that for all n ≥ nε,

Qn(θ) ≤ c0 − c1 · (ρ(θ, Θ1) ∧ δ)γ1

uniformly on {θ ∈ Θ : ρ(θ, Θ1) ≥ (cε/bn)γ2} with probability at least 1− ε.

Theorem 3 (Rate of Convergence with a Polynomial Majorant). Suppose Assumptions A1–A3
and A5 hold. If τn

p→ 0 and bnτn
p→ ∞, then dH(Θ̂n, Θ1) = Op(τ

γ2
n ).

Assumption A5 is analogous to conditions used to obtain rates of convergence in
point identified models and is a generalization of a similar condition in Chernozhukov
et al. (2007). By allowing the degree of the bounding polynomial to differ from the
exponent determining the size of the sequence neighborhoods of Θ1, this theorem is able
to characterize the rate of convergence of Θ̂n in models where irregular rates obtain. This
is important in analyzing the model of Example 1, for instance, where Θ̂n is shown to be
essentially 3

√
n-consistent.

3.3. Confidence Regions

In this section we consider the problem of constructing a sequence of sets Bn which have
the asymptotic confidence property

(4) lim
n→∞

P(Θ1 ⊆ Bn) = 1− α

for a given value of α. This is a complex problem in general, if the sets Bn are not restricted
to be members of a more tractable family of sets. So far, the literature has focused on
the case where Bn = Cn(κn) with Bn being a sequence of contour sets of Qn. Under this
restriction, the problem of choosing a sequence of arbitrary sets is reduced to that of
choosing a sequence κn. In smooth models, which satisfy Assumption A5 and where Θ̂n

converges at a polynomial rate, Chernozhukov et al. (2007) develop a subsampling-based
algorithm for constructing such a sequence.

Since their conditions are not satisfied when the objective function is discontinuous, as
in Assumption A4, we approach the problem in two alternative ways. First, we provide a
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general characterization of sequences Bn which satisfy (4). Then, we provide conditions
under which a similar subsampling procedure is valid for constructing such a sequence
from the class of contour sets of Qn.

3.4. General Confidence Regions in Discrete Models

In models for which there exists an arbitrarily fast estimator of Θ1, for a general sequence
Bn satisfying (4) (not necessarily a sequence of contour sets), we have the following
characterization.

Lemma 1. Let Θ̂n and Bn be sequences of subsets of Θ and suppose that limn→∞ P(Θ̂n =

Θ1) = 1. Then Bn has the confidence property limn→∞ P (Θ1 ⊆ Bn) ≥ 1− α if and only if
limn→∞ P

(
Θ̂n ⊆ Bn

)
≥ 1− α.

The conclusion of this lemma is stark in the sense that in models for which we
have an estimator with an arbitrarily fast rate of convergence, any sequence of sets Bn

which asymptotically covers Θ1 with probability at least 1− α must also contain Θ̂n with
probability at least 1− α. Since Θ̂n is itself essentially a probability-one confidence region,
it is not reasonable for Bn to be any larger than Θ̂n. So, the practical conclusion is that
any such sequence Bn should be equal to Θ̂n with probability 1− α. Thus, one possible
sequence is Bn = Θ̂n with probability 1− α with Bn unrestricted with probability α. It
seems reasonable to simply set Bn = Θ̂n with probability one.

3.5. Constructing Confidence Regions via Subsampling

When Bn is restricted to be a sequence contour sets, the coverage of a particular Bn can be
inferred using the statistic

Rn ≡ sup
Θ

bnQn − inf
Θ1

bnQn,

since for a sequence κn, P (Θ1 ⊆ Cn(κn/bn)) = P(Rn ≤ κn). In defining Rn the objective
function is scaled by bn, the rate of uniform convergence, so that we might use subsampling
to approximate quantiles of Rn.

An appropriate sequence κ̂n, and corresponding conservative confidence regions
Cn(κ̂n/bn) with asymptotic coverage probability of at least 1− α, can be constructed using
the algorithm below. We assume that an iid sample is available and that Rn converges in
distribution.

Assumption A6. The sample consists of independent draws from P.
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Assumption A7. Suppose that P{Rn ≤ c} → P{R ≤ c} for each c ∈ R for some random
variable R.

Algorithm 1. For a given asymptotic coverage probability 1− α:

1. Choose a subsample size m < n such that m→ ∞ and m/n→ 0 as n→ ∞. Let Mn

denote the number of subsets of size m and let τn be any sequence such that such
that Cn(τn) is consistent for Θ1.

2. Compute κ̂n as the 1− α quantile of the values {R̂n,m,j}Mn
j=1 where

R̂n,m,j ≡ sup
θ∈Θ

bmQn,m,j(θ)− inf
θ∈Cn(τn)

bmQn,m,j(θ)

and Qn,m,j denotes the sample objective function constructed using the j-th subsample
of size m.

3. Report Cn(τn) as a consistent estimate of Θ1 and Cn(κ̂n/bn) as a conservative confi-
dence region.

The following theorem addresses the validity of this algorithm for obtaining the desired
sequence κ̂n.

Theorem 4. Suppose that Assumptions A1–A4, A7, and A6 hold and that m→ ∞, and m/n→ 0
as n→ ∞. Let 1− α denote the desired coverage level, where the distribution of R is continuous at
c(1− α). Then,

κ̂n
p→ c(1− α) ≡ inf{c : P{R ≤ c} ≥ 1− α}

and

P{Θ1 ⊆ Cn(κ̂n)} ≥ (1− α) + op(1).

4. Sufficient Conditions

This section derives sufficient conditions for the more primitive conditions of the general
theorems of Section 3. These sufficient conditions are verified in the context of the
applications in Section 5, providing several examples of their use. Many of these conditions
are stated in terms of empirical process concepts—restrictions on the indexing class of
functions which generate the finite sample and limiting objective functions. We summarize
the standard notation and definitions below, but refer the reader to Section 2 of Pakes and
Pollard (1989) for further details.
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Let P denote the joint distribution of observables and Pn denote the empirical measure
associated with n independent and identically distributed from P. Whenever there is no
ambiguity we write Pg instead of

∫
g(z)P(dz) or

∫
gdP to denote the integral of some

function g with respect to a measure P.
We focus on models in which the objective functions can be expressed in terms

of a class of functions F so that Q(θ) = P f (·, θ) and Qn(θ) = Pn f (·, θ) for all θ for
f (·, θ) ∈ F . As such, we work with empirical processes indexed by classes of functions
F = { f (·, θ) : θ ∈ Θ}. Alternatively, we use parameter space Θ as the indexing set when
convenient.

Establishing the asymptotic properties of Θ̂n in these models amounts to verifying
certain properties of F . An envelope for F is a function F such that supF | f | ≤ F. For
consistency, a sufficient condition for the uniform convergence required by Assumption
A3 is that F is manageable in the sense of Pollard (1989) for a square integrable envelope
F.

Assumption C1. Θ is a nonempty, compact subset of Rk and there exists a class of
functions F = { f (·, θ) : θ ∈ Θ} such that Q(θ) = P f (·, θ) and Qn(θ) = Pn f (·, θ) for all
θ ∈ Θ.

Assumption C2. Q(θ) is piecewise continuous on Θ.

Assumption C3. F is manageable for some envelope F such that PF2 < ∞.

Lemma 2. If Assumptions C1–C3 hold, then for any sequence τn such that n1/2τn
p→ 0,

dH(Θ̂n, Θ1)
p→ 0.

Proof. The compactness assumption implies A1 and piecewise continuity of Q implies
A2. Since F is manageable with PF2 = 1 < ∞, it follows from Corollary 3.2 of Kim and
Pollard (1990) that A3 holds with bn = n1/2. The result follows by Theorem 1. �

Continuity of Q can be established by the uniform law of large numbers when the
functions f (·, θ) are continuous in θ with probability one under P and dominated by some
bounded function F (Newey and McFadden, 1994, Lemma 2.4). Furthermore, in many
models it is easy to verify that F is a Vapnik-Chervonenkis (VC) subgraph class, in the
sense of Dudley (1987), with constant envelope F < ∞. That is, when F is a class of
functions such that {subgraph( f ) : f ∈ F} is a VC class of sets and supF | f | ≤ F < ∞, F
is necessarily manageable and PF2 < ∞.

Lemma 3. Suppose that Assumption C1 holds. If F is a VC subgraph class such that | f (·, θ)| ≤ M
for all θ ∈ Θ for the constant function M < ∞, then Assumption C3 holds. In addition, if f (z, θ)

is continuous in θ with probability one, then Assumption C2 holds.
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Proof. Since F is a VC subgraph class, Lemma 2.12 of Pakes and Pollard (1989) implies
that F is Euclidean for any valid envelope, including the constant function F = M. Since
F is Euclidean, it is also manageable for F = M (cf. Pakes and Pollard, 1989, p. 1033).
Since PF2 = M2 < ∞, this verifies Assumption C3.

Furthermore, if f (z, θ) is continuous in θ with probability one, since it is dominated by
F = M for all θ, continuity of Q follows from Lemma 2.4 of Newey and McFadden (1994),
verifying Assumption C2. �

For smooth models, Kim and Pollard’s heuristic for cube-root consistency translates
well to the set identified case. Let Γ(θ) ≡ Q(θ) − Q(θ0) and Γn(θ) ≡ Qn(θ) − Qn(θ0).
We can decompose Γn(θ) into two components, a trend and a stochastic component:
Γn(θ) = Γ(θ) + [Γn(θ)− Γ(θ)]. Suppose that near Θ1, the limiting objective function is
approximately quadratic in the distance ρ(θ, Θ1): Γ(θ) = O(ρ2(θ, Θ0)). For models with a
feature Kim and Pollard call the sharp edge effect, the variance of the empirical process
component is Op(ρ(θ, Θ0)/n). Only when the trend overtakes the noise is Γn likely to be
below the maximum. Thus, the maximum is likely to occur when the standard deviation
of the random component is of the same magnitude or larger than the trend. That is, when√

ρ(θ, Θ0)/n > ρ2(θ, Θ0) or ρ(θ, Θ0) < n−1/3. Therefore, Θ̂n, the set of near maximizers of
Γn, should be within a neighborhood of Θ0 on the order of n−1/3. In the set identified case,
however, ρ(θ, Θ0) is only one component of the Hausdorff distance. Conveniently, the
other component was shown to converge arbitrarily fast under fairly weak assumptions
(Theorem 1) and therefore it does not hinder the rate of convergence.

In terms of Theorem 3, the above argument corresponds to the case where γ1 = 2 and
γ2 = 2/3. Since τn can be chosen arbitrarily close to n−1/2, the rate of convergence, rn,
can be made arbitrarily close to Op(n−1/2)γ2 = Op(n−1/3). The following conditions are
sufficient for Θ̂n to obtain near cube root rates of convergence.

Assumption C4. There exists a neighborhood Θν
1 of Θ1 with ν > 0 and positive constants

c0 and c1 such that Q(θ) ≤ c0 − c1 · ρ2(θ, Θ1) for all θ ∈ Θν
1.

Assumption C5. There exists an η0 > 0 such that for all η ≤ η0, the classes Fη ≡ { f (·, θ) :
ρ(θ, Θ1) ≤ η} are uniformly manageable with PF2

η = O(η) where Fη ≡ supFη
| f (·, θ)| is

the natural envelope of Fη .

Lemma 4. Suppose that Assumptions C1-C5 hold. For any sequence rn = o(n1/3), if τn ∝ r−3/2
n ,

then dH(Θ̂n, Θ1) = Op(rn).

Finally, note that the constant majorant condition of Assumption A4 is satisfied when
Q is a step function. Therefore, the following theorem gives sufficient conditions for an
arbitrarily fast rate of convergence.

14



Lemma 5. Suppose that Assumptions C1–C3 hold and that Q is a step function. If τn
p→ 0 and

n1/2τn
p→ ∞, then for any positive sequence rn with rn → ∞, rndH(Θ̂n, Θ1)

p→ 0.

Proof. As established by Lemma 2, Assumptions C1–C3 are sufficient for Assumptions
A1–A3 with bn = n1/2. Since Q is a step function, Assumption A4 holds for all δ <

supΘ Q− supΘ\Θ1
Q. The result follows from Assumption Theorem 2. �

5. Analysis of Panel Data Binary Choice and Duration Models

In this section we apply the general results of Sections 3 and 4 to several fixed effects
panel data models: two binary choice variants and a class of transformation and duration
models. We focus on models where observations are available at times t = 0, . . . , T − 1 for
each individual. A panel member in these models is described completely by a random
vector (y0, x0, u0, . . . , yT−1, xT−1, uT−1, c), where yt is a response variable in period t, xt is a
vector of k observed explanatory variables, ut is an unobserved disturbance in period t,
and c is a time invariant individual-specific unobserved effect. Let y ≡ (y0, . . . , yT−1) and
define x and u similarly.

5.1. Panel Data Binary Choice Models

Discrete response models have become a standard tool in applied econometrics and their
properties have been studied thoroughly in the econometrics literature (McFadden, 1974;
Maddala, 1983; Amemiya, 1985). Semiparametric methods, such as maximum score,
emerged to estimate such models without making tenuous parametric assumptions, how-
ever, these methods typically assume the existence of an exogenous explanatory variable
with full support (Manski, 1975, 1985; Horowitz, 1992). Similar rank conditions have been
successful in estimating more general regression models, but the known conditions for
point identification still include a full support condition (Han, 1987; Abrevaya, 2000). In
practice, however, it is not uncommon to encounter datasets with genuinely discrete or
bounded variables. Without a regressor with full support on the real line, under semi-
parametric assumptions, the models we consider are only partially identified in general
(Horowitz, 1998).

Here we formalize the basic linear-index fixed effects binary choice model introduced
in Example 1. Proofs for all results in this section are given in Appendix D.

Model 1 (Fixed Effects Binary Choice). For t = 0, 1,

(5) yt = 1{x′tβ + c + ut ≥ 0}
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where xt is a random variable with support X ⊆ Rk, c is a real-valued random variable, and β is
the parameter of interest, a member of some parameter space Θ ⊆ Rk. In addition, for all x and c,
Fut|xc satisfies the following:

a. Fut|xc = Fu0|xc for all t.

b. The support of ut is R.

Condition a is a substantive restriction, necessary for the estimation methods we
introduce below. It requires ut to be is stationary conditional on the identity of the panel
member—that is, conditional on (x, c). Note, however, that it does not restrict the form
of serial dependence of ut in any way. Condition b is a regularity condition which serves
to ensure that for each c and x, the event y1 6= y0 occurs with positive probability. Note
that although we focus on the case where T = 2, Charlier, Melenberg, and van Soest (1995)
have shown that maximum score estimation can be applied to panels with T > 2.

5.1.1. Identification

We begin by reviewing existing conditions for point identification before deriving the
identified that results after relaxing some of these assumptions. In the cross-sectional
model with a conditional median restriction, analogous to the fixed effects model above,
Manski (1985) showed that a full rank, full support condition on x was sufficient to point
identify β up to scale. That is, he assumes that x is not contained in a proper linear
subspace of Rk and that the first component of x has positive density everywhere on R

for almost every value of the remaining components. The same conditions were invoked
by Han (1987) for the maximum rank correlation estimator and Horowitz (1992) for the
smoothed maximum score estimator. The panel version of this assumption (for T = 2) was
used by Manski (1987) to establish point identification of β up to scale in a semiparametric
fixed effects panel data model of the kind considered in the present paper.

Thus, modulo assumptions on the disturbances, point identification of β hinges on
what one knows, or is willing to assume, about the distribution of x. The validity of
a full support assumption is application-specific. Many common variables such as age,
number of children, years of education, and gender are inherently discrete and so it is
clearly inappropriate in many cases. Similarly, variables such as income have only partial
support on the real line. One advantage of the estimators proposed in this paper is that
they do not distinguish between the point identified and partially identified cases. That
is, although they do not require a regressor with full support, they will still exploit the
additional information provided by one when available.
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We consider two alternatives to the full support condition. The first applies when x is
a discrete random variable with finite support, while the second applies when at least one
component of x is continuous but may fail to have full support on R.

Assumption B1. xt is a discrete random vector with finite support X ⊂ R for all t.

Assumption B2. The last component of x1 − x0 has positive density everywhere on a set
Wk ⊆ R for almost every value of the remaining components.

Note that this assumption does not rule out the possibility that Wk = R, but it also
includes cases where the support of w is bounded in some sense.

The primitives of Model 1 are β, Fu0|xc, and Fc|x, but β is the only finite-dimensional
parameter of interest. We now provide a tractable characterization of Θ0 in terms of
observables and show that it is equivalent to the identified set defined above. Since c
is unobserved, in order to estimate β we must find implications of the model that are
independent of c.

Theorem 5. In Model 1, the identified set is

(6) Θ0 =
{

β ∈ Θ : sgn (P(y1 = 1 | x)− P(y0 = 1 | x)) = sgn((x1 − x0)
′β) Fx − a.s.

}
.

5.1.2. Consistent Estimation of the Identified Set

Now, we use the sufficient conditions of Section 4 to establish the consistency of the set
estimator for Θ0. We first propose population and finite sample criterion functions and
show that the population criterion function characterizes the identified set exactly. Then,
we verify the sufficient conditions of Lemma 2 to show that the estimator is consistent. In
the sections that follow, we obtain the rate of convergence in two cases: under Assumption
B1 Θ̂n converges arbitrarily fast to Θ0 and, under Assumption B2 it is possible to achieve
rates arbitrarily close to n1/3.

The population objective function we propose for use in estimating Model 1 is the
maximum score objective function of Manski (1987), a panel data analog of the cross-
sectional maximum score objective function of Manski (1975, 1985):

Q(β) = E [(y1 − y0) sgn ((x1 − x0)β)] .

The corresponding finite sample analog objective function is

Qn(β) =
1
n

n

∑
i=1

(yi1 − yi0) sgn ((xi1 − xi0)β) .

Note that although the same objective function can be used for maximum score estimation
in the point identified case, the set estimators proposed here are fundamentally different
since they are defined as contour sets of this function.
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Lemma 6 below establishes the equivalence between the identified set, Θ0, and the set
of maximizers of the population objective function, Θ1.

Lemma 6. Under the maintained assumptions of Model 1, Θ1 = Θ0.

To show that Θ̂n is consistent in this model, we verify the sufficient conditions given
in Lemma 2. First, note that Assumption C1 holds with f (x, y, β) = (y1 − y0) · (2 ·
1{(x1 − x0)′β ≥ 0} − 1) and F = { f (·, β) : β ∈ Θ} since then Q(β) = P f (·, β) and
Qn(β) = Pn f (·, β) for all β ∈ Θ with Θ being a nonempty and compact subset of Rk by
assumption.

Now, under Assumption B1, Q is a step function which is piecewise continuous. Under
Assumption B2, Q is continuous by the law of large numbers. Since the last component of
x1 − x0 has positive density everywhere onWk, it follows that f (x, y, β) is continuous in β

with probability one. Furthermore, f is dominated by the constant function F = 1 for all
β ∈ Θ. Therefore, Assumption C2 holds in both cases.

It turns out that F is also a VC subgraph class of functions which, along with the
domination condition above, is sufficient for Assumption C3. We verify this in the proof of
the following lemma, which summarizes the consistency result.

Theorem 6. In Model 1, under either Assumption B1 or B2 for any sequence τn
p→ 0 with

n1/2τn
p→ ∞, dH(Θ̂n, Θ0)

p→ 0.

5.1.3. Rates of Convergence

The rate of convergence of Θ̂n to Θ0 in Model 1 depends on the support of w. We obtain
the rate under both Assumption B1 and B2. We show that when the support of x is finite,
Θ̂n converges arbitrarily fast in probability to Θ0. On the other hand, when at least one
component of x1− x0 is continuous, the estimator can achieve rates arbitrarily close to n1/3.
The rate depends on τn and, although the exact rate n1/3 is not achievable, in practice, one
can achieve rates close to n1/3 by choosing, for example, τn ∝

√
ln n/n.

Discrete Regressors Here, we verify the constant majorant in the context of Model 1. We can
then apply Theorem 2 to show that in this case, Θ̂n converges arbitrarily fast to Θ0.

When the support of (x0, x1) is a finite set, henceforth X , the objective function Q(θ)

can be rewritten as follows:

Q(θ) = Ex Ey|x
[
(y1 − y0) sgn

(
(x1 − x0)

′β
)]

= ∑
x∈X

P(x) [P(y1 = 1 | x)− P(y0 = 1 | x)] sgn
(
(x1 − x0)

′β
)

.
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Therefore, Q(θ) is a step function and there exists a real number δ > 0 such that for all
θ ∈ Θ \Θ0, Q(θ) ≤ supΘ Q− δ. In particular, δ is bounded below by the smallest nonzero
value of P(x) [P(y1 = 0 | x)− P(y0 = 1 | x)] for any x ∈ X . Thus, applying Theorem 2,
we have the following result.

Theorem 7. Suppose that Assumption B1 holds in Model 1. For any sequence τn such that τn
p→ 0

and n1/2τn
p→ ∞, then Θ̂n equals Θ0 with probability approaching one.

Continuous Regressors The properties of the maximum score objective function in the
continuous covariate case have been studied by Kim and Pollard (1990), Abrevaya and
Huang (2005), and others. For simplicity, define w ≡ x1 − x0. We follow Abrevaya and
Huang (2005) in normalizing the coefficient on the last component of w, wk, to be either
1 or −1 and consider β to be a vector in Rk−1. Since this component of β converges
arbitrarily fast, without loss of generality we only consider the case where βk = 1. Let w̃
denote the remaining components of w.

The following theorem formalizes the cube-root consistency result for this model. We
will need several additional assumptions on the distribution of w, which, for comparison,
are intentionally close to those made by Abrevaya and Huang (2005) in analyzing the
cross-sectional model in the point identified case. Let G and g denote generic cdfs and
density functions, with subscripts denoting the associated random variables in cases where
there is ambiguity. Finally, let wk denote the k-th component of w and let w̃ denote the
remaining k− 1 components.

Theorem 8. Suppose that Assumptions A6 and B2 hold in Model 1. In addition, suppose the
following:

a. The components of w̃ and w̃w̃′ have finite first absolute moments.

b. The function g′(wk | w̃) exists and, for some M > 0, |g′(wk | w̃)| < M and |g(wk | w̃)| < M
for all wk and almost every w̃.

c. For all v in a neighborhood of 0, all wk in a neighborhood around −w̃′β0, almost every w̃, and
some M > 0, the function g(v | w̃, wk) exists and g(v | w̃, wk) < M.

d. For all v in a neighborhood of 0, all wk in a neighborhood of −w̃′β0, almost every w̃, and some
M > 0, the function ∂G(v | w̃, wk)/∂wk exists and |∂G(v | w̃, wk)/∂wk| < M.

e. Θ0 is contained in the interior of Θ.

f. The matrix V(θ) ≡ E [2gv(0 | w̃,−w̃′β)gwk(−w̃′β | w̃)w̃w̃′] is positive semidefinite for all
θ ∈ bd(Θ0).

Then for any sequence τn such that τn
p→ 0 and n1/2τn

p→ ∞, dH(Θ̂n, Θ0) = Op(τ2/3
n ).
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5.1.4. Confidence Regions

In this section we verify the conditions required for constructing confidence regions in the
context of Model 1 under Assumption B1. The following lemma verifies the convergence of
Rn required by Assumption A7 and establishes the validity of Algorithm 1 for constructing
conservative confidence regions in this model.

Lemma 7. In Model 1, if Assumption A6 holds, then Assumption A7 is satisfied.

5.2. Panel Data Binary Choice Models with a Lagged Dependent Variable

In this section we focus on an extension of the basic fixed effects binary choice model
which introduces a lagged dependent variable in order to control for state dependence.
Since the results in this section parallel those from previous sections and are derived in a
similar manner, all proofs are reserved for Appendix E. The formal model specification
follows. Note that since we do not observe yt in periods prior to the sample, the model is
left unspecified in the first period.

Model 2 (Lagged Dependent Variable Model). The choice probabilities in the first period are
P(y0 = 0 | x, c) = p0(x, c), where p0 is unknown and 0 < p0(x, c) < 1 for all x and c. In
subsequent periods t = 1, . . . , T,

(7) yt = 1{x′tβ + γyt−1 + c + ut ≥ 0}

where xt is a random vector with support X , c is a real-valued random variable, and θ = (β, γ)

are the parameters of interest which lie in some parameter space Θ ⊆ Rk+1. In addition, the
unobservables ut are serially independent, identically distributed with cdf Fut|xc = Fu0|xc for all t,
and have full support on R.

Note that in this model, as opposed to the basic fixed effects model, serial correlation in
the disturbances is prohibited. The full support assumption on ut is a regularity condition
which guarantees that certain events used for estimation occur with positive probability.

First we must characterize the identified set, and in doing so our analysis follows along
the lines of Chamberlain (1985) and Honoré and Kyriazidou (2000) and we focus on the
case where T = 4. Restrictions on the identified set in this model that are independent of
the fixed effect can be found by comparing events with the same outcome in periods 0 and
3 but different outcomes in periods 1 and 2. Let A and B denote these events, for given
values of d0, d3 ∈ {0, 1}:

A = {y0 = d0, y1 = 0, y2 = 1, y3 = d3},

B = {y0 = d0, y1 = 1, y2 = 0, y3 = d3}.
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It follows that for all values of d0 and d3,

sgn (P(A | x, x2 = x3)− P(B | x, x2 = x3)) = sgn
(
(x2 − x1)

′β + γ(d3 − d0)
)

.

A characterization of Θ0 using this condition is formalized in the following theorem.

Theorem 9. In Model 2,

(8) Θ0 ⊆ Θ̃0 =
{

θ ∈ Θ : sgn (P(A | x, x2 = x3)− P(B | x, x2 = x3))

= sgn
(
(x1 − x2)

′β + γ(d3 − d0)
)

Fx − a.s. ∀d0, d3 ∈ {0, 1}
}

.

Next, we propose a set estimator for Θ̃0 and apply the general results from Section 3

to show that it is consistent and derive the rate of convergence. For simplicity we only
consider the lagged dependent variable model under Assumption B1.

We use the population objective function

Q(θ) = E
[
1{x2 = x3} · (y2 − y1) · sgn((x2 − x1)

′β + γ(y3 − y0))
]

.

This function was used by Honoré and Kyriazidou (2000) for estimation in point identified
models. The finite sample objective function is

Qn(θ) =
1
n

n

∑
i=1

1{xi2 = xi3} · (yi2 − yi1) · sgn((xi2 − xi1)
′β + γ(yi3 − yi0)).

The following lemma establishes that Q is maximized exactly on Θ̃0.

Lemma 8 (Objective Function Characterization of Θ1). Under the maintained assumptions of
Model 2, Θ1 = Θ̃0, where Θ̃0 is defined in (8).

Next, we verify Assumptions C1–C3 to establish the consistency of Θ̂n for Θ̃0. As
before, Q is a step function under Assumption B1 since

Q(θ) = ∑
y0∈{0,1}

∑
y3∈{0,1}

∑
x∈X

P(x)P(y0 | x)P(y3 | x, y0)E[y2 − y1 | x, y0, y3]

× sgn
(
(x2 − x1)

′β + γ(y3 − y0)
)

.

Furthermore, both Q and Qn are generated by a class of functions F indexed by θ and
that this class is manageable for a square integrable envelope.

Theorem 10. Suppose that the conditions of Model 2 and Assumption B1 hold. Let F be the class
of functions

f (x, y, θ) = 1{x2 = x3}(y2 − y1)
[
2 · 1{(x2 − x1)

′β + γ(y3 − y0) ≥ 0} − 1
]

indexed by θ ∈ Θ. Then Q(θ) = P f (·, ·, θ) and Qn(θ) = Pn f (·, ·, θ) for all θ ∈ Θ, Q is piecewise
continuous, and F is manageable for the constant envelope F = 1. It follows that for any sequence
τn such that τn

p→ 0 and n1/2τn
p→ ∞, dH(Θ̂n, Θ̃0)

p→ 0.
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It is immediate from Theorem 10 and the fact that Q is a step function under Assump-
tion B1 that Θ̂n converges arbitrarily fast to Θ̃0 in probability.

Corollary. Under the conditions of Theorem 10, for any positive sequence rn with rn → ∞,
rndH(Θ̂n, Θ̃0)

p→ 0.

Proof. The result follows directly from Theorem 10, noting that Q is a step function, by
applying Lemma 5. �

Turning to confidence regions in models with discrete regressors, the arguments to
establish the validity of the subsampling procedure of Algorithm 1 are essentially identical
to those for Model 1. This follows since both objective functions are of the same form in the
respective classes of functions and both functions satisfy the constant majorant assumption.
Since F is Euclidean, it follows that Lemma 7 also applies to Model 2 under Assumption
B1. Therefore, conservative confidence regions can be constructed using Algorithm 1.

5.3. Panel Data Transformation and Duration Models

This section focuses on fixed effects panel data duration models, with multiple spells,
which are members of a more general class of transformation models.

Model 3 (Panel Data Transformation Model). For all t,

(9) Λ(yt) = x′tβ + c + ut

where Λ is a strictly increasing function, xt is a random vector with support X ⊆ Rk, c is a
real-valued random variable, and β, the vector of parameters of interest, lies in a compact subset of
Rk. The disturbances, ut, are iid conditional on x and c with positive density almost everywhere on
R and with cdf Fu0|xc.

Here, t denotes a single spell, the finite-dimensional parameter of interest is β, and the
parameter space is Θ ⊆ Rk. The covariates xt remain constant within a spell, but vary may
across spells. As before, c is a time-invariant individual-specific unobserved variable.

This model is quite general and contains many common duration models in their
panel data forms with individual-specific time-invariant unobserved heterogeneity. For
example, the generalized accelerated failure time (GAFT) model of Ridder (1990) arises
when Λ(y) = ln z(y). Similarly, the accelerated failure time (AFT) model arises when
Λ(y) = ln y. The mixed proportional hazard (MPH) model arises when ut has the minus
extreme value distribution with Fu0|xc(u) = 1− exp(− eu) and Λ(y) = ln H0(y) is the log
integrated baseline hazard function. Writing the model as in (9), without specifying Λ,
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includes all of these models without imposing unnecessary functional form restrictions on
the baseline hazard function or parametric distributional assumptions on ut.

Identification of this model and similar ones has been considered by a number of
authors under a wide variety of conditions. For example, Ridder (1990) shows that
the GAFT model with continuous covariates is nonparametrically identified both with
continuous duration data and with discrete duration data and an additional parametric
assumption on the regression function. Model 3 is slightly more general than the GAFT
model, and we focus instead on the case when the observed durations are continuous
but the covariates are discrete. Han (1987), Chen (2002), Abrevaya (2000) and others
have considered point identification and estimation of various components of generalized
regression models, which contain models of this type, but invariably the maintained
assumptions include a full-support condition, which we relax. An exception is Honoré
and Lleras-Muney (2006), who estimate bounds on parameters in a competing risks model
with discrete regressors and interval-valued durations.

5.3.1. Estimating the Index Coefficients

In many ways, this model is very similar to Model 1 and so many of the results will be
familiar. When the disturbances are independent, we can carry out a similar ranking
procedure relating the ordering of y1 and y0 to that of x′1β and x′0β:

P(y1 ≥ y0 | x, c) ≥ P(y0 ≥ y1 | x, c)

⇐⇒ P(x′1β + u1 ≥ x′0β + u0 | x, c) ≥ P(x′0β + u0 ≥ x′1β + u1 | x, c)

⇐⇒ P(u0 − u1 ≤ (x1 − x0)
′β | x, c) ≥ P(u1 − u0 ≤ (x0 − x1)

′β | x, c)

⇐⇒ P(u0 − u1 ≤ (x1 − x0)
′β | x, c) ≥ P(u0 − u1 ≤ (x0 − x1)

′β | x, c)

⇐⇒ (x1 − x0)
′β ≥ 0

Note that we are able to exchange u1 and u0 due to the independence assumption.
Here we consider estimating the set suggested by the rank condition above:

Θ̃0 =
{

β ∈ Θ : sgn (P(y1 ≥ y0 | x)− P(y0 ≥ y1 | x)) = sgn
(
(x1 − x0)

′β
)}

.

This set is guaranteed to contain Θ0. The intuition underlying this set is that, due to the
structure of the model, whenever x′1β ≥ x′0β it is likely also the case that y1 ≥ y0.

Consider the following population objective function and sample analog:

Q(β) = E
[
sgn(y1 − y0) · sgn

(
(x1 − x0)

′β
)]

Qn(β) =
1
n

n

∑
i=1

sgn(yi1 − yi0) · sgn
(
(xi1 − xi0)

′β
)
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Due to the similarity of the objective functions, it follows from the proof of Lemma 6 for
Model 1 that Q is maximized exactly on Θ̃0.

As before, we can write Q(β) = P f (·, β) and Qn(β) = Pn f (·, β) for all β where

f (x, y, β) = 1{y1− y0 > 0} · 1{(x1− x0)
′β ≥ 0} − 1{y1− y0 < 0} · 1{(x1− x0)

′β < 0}.

Since xt has finite support for each t, Q is again a step function and, as with the previous
models, F is a VC subgraph class with envelope F = 1. It follows from Lemmas 3

and 5 that if τn
p→ 0 and n1/2τn

p→ ∞, then for any positive sequence rn with rn → ∞,
rndH(Θ̂n, Θ1)

p→ 0.

5.3.2. Estimating the Transformation Function

In addition to β, one might also be interested in estimating the transformation function Λ
at particular values of y. This section introduces a set estimator for Λ(y) which is based
on rank conditions similar to those exploited above for estimating β.

The location of Λ(y) is not identified,4 so we focus on estimating differences Λ(y)−
Λ(ȳ). In practice, it is useful to locate ȳ in an informative area of the domain of Λ, such as
the median of the sample (Chen, 2002). Now, for a generic value of y, the model implies
the following two restrictions on Λ(y)−Λ(ȳ):

P(y1 ≥ y | x) ≥ P(y0 ≥ ȳ | x) ⇐⇒ (x1 − x0)
′β ≥ Λ(y)−Λ(ȳ),

P(y1 ≥ ȳ | x) ≥ P(y0 ≥ y | x) ⇐⇒ (x1 − x0)
′β ≥ Λ(ȳ)−Λ(y).

As before, these rank conditions suggest an estimator based on the maximum score
principle. These two restrictions cannot be used directly because β is unknown, but we
can make use of the consistent estimator Θ̂n defined above. For notational simplicity, we
now impose the location normalization Λ(ȳ) = 0. We propose constructing a set estimate
Λ̂n(y) for Λ(y) which consists of all values of λ which maximize the following objective
function, within a tolerance of τn, for some β̂ ∈ Θ̂n:

(10) Γn(λ | β̂, y, ȳ) =
1
n

n

∑
i=1

[
(1{yi1 > y} − 1{yi0 > ȳ}) 1{(xi1 − xi0)

′ β̂ ≥ λ}

+ (1{yi1 > ȳ} − 1{yi0 > y}) 1{(xi1 − xi0)
′ β̂ ≥ −λ}

]
.

That is, the set estimate is defined as

Λ̂n(y) =
⋃

β̂∈Θ̂n

{
λ : Γn(λ | β̂, y, ȳ) ≥ sup

λ′
Γn(λ

′ | β̂, y, ȳ)− τn

}
,

4Note that replacing Λ(y) by Λ̃(y) = Λ(y) + α and ut by ũt = ut + α results in an observationally
equivalent model.
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where τn
p→ 0 is a slackness sequence.

This seems to be a reasonable estimator, since Θ̂n is consistent, and we find that it
has good finite sample performance in Section 6. Studying the asymptotic properties of
two-stage estimators such as this one is a clear direction for future research.

6. Monte Carlo Experiments

In this section we summarize the results of a series of Monte Carlo experiments intended
to shed light on the finite sample properties of the proposed estimators and inference
procedures defined in Section 3.5 First, we consider the estimator for Model 1 by replicating
the following model.

Specification FE1. Observations are generated according to the Model 1 with

yit = 1{xi1t + βxi2t + ci + uit ≥ 0},

where xi1t and xi2t are uniformly distributed for each t with xi1t ∈ {−1, 0, 1} and xi2t ∈
{0, 1, 2, 3, 4}. The individual effect is generated as ci = (xi11 + xi12 + xi21 + xi22)/4 and
the disturbances are iid standard Normal draws. The population parameter used in the
experiments is β0 = −0.15 which yields the identified set Θ0 = [−0.248,−0.003].

Figure 1 displays one realization of Qn(β) for this model, with n = 500, along with the
population objective function Q(β). We compare the estimates for several sample sizes
in Table 1, which lists the mean estimated set over 1000 replications for each sample size
with τn = C

√
ln n/n for C ∈ {0.20, 0.10, 0.05, 0.00}. For each sample size, the standard

deviation of the endpoints of the estimated sets and the coverage frequency are also
reported. By definition of consistency, the coverage probability should asymptotically
approach one. The reported estimates illustrate the trade-off faced in choosing C in finite
samples. Higher mean coverage comes at the cost of a mean lower Hausdorff distance.

As seen in Table 1, smaller constants C used to construct τn produce smaller estimated
sets, but only at the expense of lower empirical coverage for small sample values of n. One
interesting point to note about the estimates in the first panel of Table 1, with C = 0.20, is
that the upper bound of the estimated reaches a plateau at −0.003 for the small sample
sizes shown. This corresponds to the large jump in the objective function at β = −0.003
that can be seen in Figure 1. Since the sequence τn = 0.20

√
ln n/n is large relative to the

other panels, the cutoff value does not rise above this jump as quickly.
Table 2 lists, for m = n2/5, m = n3/5, and m = n4/5 respectively, the empirical coverage

frequencies of 1000 confidence regions for 1 − α ∈ {0.75, 0.90, 0.95}. For each of the

5Fortran 95 source code to reproduce all figures and tables in this section is available from the author’s
website at http://jblevins.org/research/panel.
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1000 datasets used for estimation and for each value of 1− α, a confidence region was
constructed using Algorithm 1. These regions are based on the estimated sets from the
same 1000 datasets as before.

Although the confidence regions in this discrete-regressor specification have roughly
the desired coverage in small samples, the coverage appears to converge to 1.0 in all cases.
This reflects the alternate characterization discussed in Section 3.3 and indicates that Rn

has a degenerate limiting distribution (with equal quantiles). The asymptotic confidence
regions constructed via subsampling are still valid, but they are conservative in the extreme
sense that they are asymptotic probability one confidence sets.

Specification FE2. This specification is identical to Specification FE1, except with β0 = 1.000.
The resulting identified set is Θ0 = [0.756, 1.327].

In Specification FE1, Θ̂n appears to be consistent even with τn = 0. However, Speci-
fication FE2 shows that this is not the case in general since the estimator appears to be
inconsistent with τn = 0. As shown in Table 3, for very large sample sizes (up to one
million observations), the coverage of Θ̂n appears to converge to zero (instead of one) and
the Hausdorff distance appears to converge to 0.29 instead of zero. The confidence regions,
shown in Table 4, also have poor empirical coverage when τn = 0 but behave as expected
for appropriately-constructed sequences τn.

We also consider two binary choice specifications with a continuous but bounded
regressor.

Specification FE3. This specification is identical to Specification FE1 with the exception
that xi1t ∼ U(0, 1) is continuously distributed and bounded on the interval (0, 1), xi2t ∼
U({1, 2, 3}) is discrete and uniformly distributed, and β0 = −0.600. This model is point
identified with Θ0 = [−0.600,−0.600].

Specification FE4. This specification is identical to Specification FE3 with the exception that
β0 = −1.000. The resulting identified set is Θ0 = [−3.000,−0.986], where the compact
parameter space is Θ = [−3, 3].

The population objective function for Specification FE3 has a maximum at β0 = −0.6,
as shown in Figure 2, but this maximum is not very well pronounced. When we change
β0 = −1.0, the model is no longer point identified, as can be seen in the limiting objective
function plotted in Figure 3. The estimates and confidence regions are given in Tables 5

and 6 for Specification FE3 and in Tables 7 and 8 for Specification FE4.
One interesting point is that in the bounded regressor case of Specification FE3, even

when Θ0 is a singleton, the maximum score objective function may still be maximized on
a set. Since there is no guidance about how to pick a particular point from this set, one
must pick an arbitrary point. The proposed set estimators avoid this problem and remain
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valid even in the point identified case.

Specification MPH1. This specification replicates a mixed proportional hazards version of
Model 3 with

Λ(yit) = xi1t + βxi2t + ci + uit

where

xi1t ∼ U({−1, 0, 1}),

xi2t ∼ U({−1,−0.5,−0.2, 0.5, 1.0}),

ci = (xi11 + xi12 + xi21 + xi22)/4,

and uit follows the standard minus type I extreme value distribution. The population
parameter is β0 = 0.100 and the resulting identified set satisfies Θ0 ⊆ Θ̃0 = [0.003, 0.498].

The population objective function and one realization of Qn(β) with n = 250 observa-
tions for specification MPH1 are plotted in Figure 4. Table 9 displays the corresponding
estimates. We also estimate bounds for the transformation function Λ(y). The true
transformation and estimated bounds are displayed in Figure 5 for n = 250 observations.

7. Conclusion

We have developed new conditions for establishing consistency and both regular and
irregular rates of convergence for set estimators in partially identified econometric models
and proposed methods for performing inference in models whose estimators exhibit
arbitrarily fast convergence. We have applied these general results to a standard binary
choice panel data models with fixed effects. First we characterize the sharp identified set
and we propose a consistent estimator which converges arbitrarily fast with fully discrete
regressors and can achieve rates arbitrarily close to n1/3 when a continuous regressor
is present. We also consider extensions to a lagged dependent variable and panel data
duration models. Finally, a series of Monte Carlo experiments illustrates the estimation
and inference procedures, which perform as expected.
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Figure 1. Q(β) and one realization of Qn(β) for specification FE1 with n = 500.
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Figure 2. Q(β) and one realization of Qn(β) for specification FE3 with n = 100.
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Figure 3. Q(β) and one realization of Qn(β) for specification FE4 with n = 100.
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Figure 4. Q(β) and one realization of Qn(β) specification MPH1 with n = 250.
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Figure 5. Λ(y) and estimated bounds for specification MPH1 with n = 250.
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C n Mean Θ̂n St. Dev. Coverage dH

0.20

125 [ -0.596, 0.194 ] [ 0.304, 0.232 ] 0.94 0.45

250 [ -0.520, 0.128 ] [ 0.207, 0.172 ] 0.97 0.33

500 [ -0.472, 0.085 ] [ 0.127, 0.137 ] 0.99 0.26

1000 [ -0.436, 0.036 ] [ 0.086, 0.094 ] 1.00 0.20

2000 [ -0.395, 0.004 ] [ 0.081, 0.039 ] 1.00 0.15

4000 [ -0.350, -0.003 ] [ 0.053, 0.000 ] 1.00 0.10

8000 [ -0.329, -0.003 ] [ 0.019, 0.000 ] 1.00 0.08

16000 [ -0.318, -0.003 ] [ 0.033, 0.000 ] 1.00 0.07

0.10

125 [ -0.473, 0.112 ] [ 0.282, 0.211 ] 0.85 0.33

250 [ -0.383, 0.044 ] [ 0.180, 0.156 ] 0.86 0.20

500 [ -0.368, 0.025 ] [ 0.118, 0.113 ] 0.93 0.15

1000 [ -0.356, 0.010 ] [ 0.085, 0.059 ] 0.99 0.12

2000 [ -0.329, -0.001 ] [ 0.060, 0.025 ] 1.00 0.08

4000 [ -0.306, -0.003 ] [ 0.045, 0.000 ] 1.00 0.06

8000 [ -0.283, -0.003 ] [ 0.042, 0.000 ] 1.00 0.04

16000 [ -0.260, -0.003 ] [ 0.030, 0.000 ] 1.00 0.01

0.05

125 [ -0.339, 0.012 ] [ 0.240, 0.230 ] 0.63 0.22

250 [ -0.310, -0.029 ] [ 0.167, 0.181 ] 0.65 0.16

500 [ -0.327, 0.000 ] [ 0.113, 0.121 ] 0.87 0.12

1000 [ -0.314, -0.001 ] [ 0.076, 0.061 ] 0.97 0.08

2000 [ -0.292, -0.006 ] [ 0.054, 0.035 ] 0.98 0.05

4000 [ -0.271, -0.004 ] [ 0.038, 0.018 ] 0.99 0.02

8000 [ -0.256, -0.003 ] [ 0.025, 0.000 ] 1.00 0.01

16000 [ -0.250, -0.003 ] [ 0.012, 0.000 ] 1.00 0.00

0.00

125 [ -0.339, 0.012 ] [ 0.240, 0.230 ] 0.63 0.22

250 [ -0.310, -0.029 ] [ 0.167, 0.181 ] 0.65 0.16

500 [ -0.289, -0.037 ] [ 0.111, 0.141 ] 0.75 0.10

1000 [ -0.275, -0.037 ] [ 0.063, 0.100 ] 0.83 0.06

2000 [ -0.262, -0.027 ] [ 0.036, 0.077 ] 0.90 0.03

4000 [ -0.253, -0.012 ] [ 0.020, 0.047 ] 0.96 0.01

8000 [ -0.249, -0.005 ] [ 0.008, 0.024 ] 0.99 0.00

16000 [ -0.248, -0.003 ] [ 0.004, 0.008 ] 1.00 0.00

Table 1. Estimates for specification FE1 with β0 = −0.150 and Θ0 = [−0.248,−0.003].
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C n
m = n2/5 m = n3/5 m = n4/5

0.750 0.900 0.950 0.750 0.900 0.950 0.750 0.900 0.950

0.20

125 0.804 0.922 0.963 0.909 0.941 0.948 0.940 0.960 0.967

250 0.845 0.930 0.966 0.942 0.968 0.976 0.966 0.981 0.982

500 0.860 0.953 0.976 0.972 0.987 0.991 0.973 0.992 0.994

1000 0.871 0.973 0.983 0.981 0.996 0.998 0.981 0.994 0.998

2000 0.936 0.984 0.998 0.993 0.997 0.997 0.996 1.000 1.000

4000 0.977 0.994 1.000 1.000 1.000 1.000 0.999 1.000 1.000

8000 0.990 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

16000 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

0.10

125 0.710 0.804 0.879 0.812 0.897 0.910 0.870 0.883 0.891

250 0.726 0.804 0.841 0.802 0.878 0.907 0.873 0.888 0.897

500 0.785 0.866 0.905 0.886 0.930 0.945 0.913 0.941 0.958

1000 0.829 0.909 0.951 0.948 0.982 0.989 0.953 0.979 0.990

2000 0.912 0.959 0.995 0.983 0.992 0.994 0.991 1.000 1.000

4000 0.966 0.991 1.000 0.999 1.000 1.000 0.998 1.000 1.000

8000 0.990 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

16000 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

0.05

125 0.624 0.641 0.654 0.648 0.660 0.660 0.650 0.650 0.651

250 0.664 0.683 0.695 0.667 0.684 0.684 0.666 0.666 0.667

500 0.759 0.804 0.834 0.834 0.878 0.896 0.871 0.887 0.894

1000 0.814 0.870 0.916 0.922 0.963 0.966 0.941 0.960 0.970

2000 0.908 0.953 0.987 0.978 0.985 0.986 0.984 0.988 0.988

4000 0.964 0.987 0.994 0.995 0.995 0.995 0.995 0.996 0.996

8000 0.990 0.999 0.999 1.000 1.000 1.000 1.000 1.000 1.000

16000 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

0.00

125 0.624 0.641 0.654 0.648 0.660 0.660 0.650 0.650 0.651

250 0.664 0.683 0.695 0.667 0.684 0.684 0.666 0.666 0.667

500 0.737 0.743 0.748 0.759 0.765 0.765 0.731 0.734 0.737

1000 0.802 0.804 0.805 0.837 0.837 0.837 0.845 0.846 0.847

2000 0.905 0.905 0.905 0.899 0.899 0.899 0.918 0.918 0.918

4000 0.964 0.964 0.964 0.964 0.964 0.964 0.957 0.957 0.957

8000 0.990 0.990 0.990 0.991 0.991 0.991 0.986 0.986 0.986

16000 0.999 0.999 0.999 0.999 0.999 0.999 1.000 1.000 1.000

Table 2. Empirical coverage of confidence regions for specification FE1.
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C n Mean Θ̂n St. Dev. Coverage dH

0.20

125 [ 0.404, 2.334 ] [ 0.322, 0.755 ] 0.83 1.15

250 [ 0.513, 2.040 ] [ 0.264, 0.728 ] 0.83 0.86

500 [ 0.590, 1.871 ] [ 0.192, 0.595 ] 0.88 0.64

1000 [ 0.648, 1.615 ] [ 0.128, 0.372 ] 0.92 0.36

2000 [ 0.700, 1.460 ] [ 0.090, 0.210 ] 0.92 0.19

4000 [ 0.735, 1.382 ] [ 0.062, 0.109 ] 0.94 0.09

8000 [ 0.754, 1.327 ] [ 0.041, 0.070 ] 0.94 0.03

16000 [ 0.758, 1.324 ] [ 0.041, 0.052 ] 0.95 0.01

32000 [ 0.759, 1.325 ] [ 0.042, 0.050 ] 0.95 0.01

64000 [ 0.757, 1.327 ] [ 0.037, 0.041 ] 0.96 0.01

128000 [ 0.755, 1.327 ] [ 0.028, 0.042 ] 0.97 0.01

256000 [ 0.754, 1.329 ] [ 0.026, 0.033 ] 0.98 0.01

512000 [ 0.753, 1.329 ] [ 0.022, 0.033 ] 0.98 0.01

1024000 [ 0.754, 1.329 ] [ 0.025, 0.035 ] 0.98 0.01

0.00

125 [ 0.789, 1.453 ] [ 0.285, 0.618 ] 0.23 0.49

250 [ 0.841, 1.276 ] [ 0.210, 0.368 ] 0.16 0.34

500 [ 0.874, 1.215 ] [ 0.161, 0.227 ] 0.10 0.29

1000 [ 0.867, 1.181 ] [ 0.134, 0.177 ] 0.07 0.28

2000 [ 0.869, 1.174 ] [ 0.128, 0.169 ] 0.06 0.28

4000 [ 0.872, 1.168 ] [ 0.125, 0.168 ] 0.03 0.29

8000 [ 0.870, 1.162 ] [ 0.125, 0.168 ] 0.02 0.29

16000 [ 0.877, 1.170 ] [ 0.125, 0.168 ] 0.02 0.29

32000 [ 0.868, 1.160 ] [ 0.125, 0.168 ] 0.02 0.29

64000 [ 0.874, 1.164 ] [ 0.125, 0.168 ] 0.01 0.29

128000 [ 0.877, 1.167 ] [ 0.125, 0.168 ] 0.01 0.29

256000 [ 0.872, 1.163 ] [ 0.125, 0.168 ] 0.01 0.29

512000 [ 0.870, 1.158 ] [ 0.125, 0.168 ] 0.01 0.29

1024000 [ 0.878, 1.167 ] [ 0.125, 0.168 ] 0.00 0.29

Table 3. Estimates for specification FE2 with β0 = 1.000 and Θ0 = [0.756, 1.327].
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Empirical Coverage
C n 0.750 0.900 0.950

0.20

125 0.819 0.834 0.841

250 0.834 0.838 0.863

500 0.768 0.884 0.903

1000 0.835 0.900 0.917

2000 0.807 0.905 0.918

4000 0.760 0.898 0.926

8000 0.761 0.900 0.927

16000 0.721 0.881 0.926

32000 0.728 0.871 0.927

64000 0.740 0.899 0.943

128000 0.753 0.895 0.949

256000 0.767 0.904 0.952

512000 0.723 0.896 0.948

1024000 0.746 0.886 0.941

0.00

125 0.248 0.275 0.275

250 0.184 0.230 0.230

500 0.110 0.145 0.148

1000 0.081 0.089 0.090

2000 0.060 0.061 0.061

4000 0.028 0.028 0.028

8000 0.021 0.021 0.021

16000 0.016 0.016 0.016

32000 0.020 0.020 0.020

64000 0.007 0.007 0.007

128000 0.007 0.007 0.007

256000 0.014 0.014 0.014

512000 0.005 0.005 0.005

1024000 0.002 0.002 0.002

Table 4. Empirical coverage of confidence regions for specification FE2.
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C n Mean Θ̂n St. Dev. Coverage dH

0.20

125 [ -2.370, -0.218 ] [ 1.054, 0.148 ] 0.89 1.88

250 [ -2.422, -0.273 ] [ 1.013, 0.127 ] 0.90 1.90

500 [ -2.475, -0.289 ] [ 0.958, 0.106 ] 0.95 1.93

1000 [ -2.582, -0.312 ] [ 0.871, 0.083 ] 0.98 2.01

2000 [ -2.612, -0.344 ] [ 0.838, 0.067 ] 0.99 2.03

4000 [ -2.558, -0.364 ] [ 0.878, 0.053 ] 1.00 1.97

8000 [ -2.427, -0.390 ] [ 0.952, 0.046 ] 1.00 1.83

16000 [ -2.177, -0.409 ] [ 1.042, 0.038 ] 1.00 1.58

0.10

125 [ -1.921, -0.296 ] [ 1.209, 0.171 ] 0.72 1.50

250 [ -1.672, -0.390 ] [ 1.198, 0.162 ] 0.63 1.23

500 [ -1.607, -0.393 ] [ 1.155, 0.139 ] 0.69 1.13

1000 [ -1.813, -0.388 ] [ 1.143, 0.106 ] 0.86 1.29

2000 [ -1.708, -0.419 ] [ 1.116, 0.089 ] 0.89 1.16

4000 [ -1.559, -0.434 ] [ 1.071, 0.074 ] 0.92 1.00

8000 [ -1.367, -0.452 ] [ 0.985, 0.064 ] 0.94 0.80

16000 [ -1.048, -0.467 ] [ 0.730, 0.053 ] 0.97 0.47

0.05

125 [ -1.254, -0.427 ] [ 1.154, 0.216 ] 0.33 0.91

250 [ -1.058, -0.489 ] [ 0.991, 0.198 ] 0.26 0.66

500 [ -1.213, -0.444 ] [ 1.037, 0.156 ] 0.50 0.77

1000 [ -1.218, -0.452 ] [ 0.998, 0.133 ] 0.59 0.74

2000 [ -1.143, -0.482 ] [ 0.917, 0.109 ] 0.65 0.63

4000 [ -0.976, -0.501 ] [ 0.754, 0.098 ] 0.65 0.44

8000 [ -0.866, -0.509 ] [ 0.596, 0.081 ] 0.67 0.32

16000 [ -0.748, -0.516 ] [ 0.327, 0.068 ] 0.76 0.19

0.00

125 [ -1.254, -0.427 ] [ 1.154, 0.216 ] 0.33 0.91

250 [ -1.058, -0.489 ] [ 0.991, 0.198 ] 0.26 0.66

500 [ -0.843, -0.516 ] [ 0.777, 0.182 ] 0.19 0.43

1000 [ -0.748, -0.545 ] [ 0.615, 0.161 ] 0.15 0.31

2000 [ -0.688, -0.576 ] [ 0.444, 0.140 ] 0.12 0.21

4000 [ -0.652, -0.589 ] [ 0.307, 0.121 ] 0.10 0.14

8000 [ -0.615, -0.592 ] [ 0.153, 0.106 ] 0.08 0.10

16000 [ -0.608, -0.597 ] [ 0.088, 0.087 ] 0.05 0.08

Table 5. Estimates for specification FE3 with β0 = −0.600 and Θ0 = [−0.600,−0.600].
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C n
m = n2/5 m = n3/5 m = n4/5

0.750 0.900 0.950 0.750 0.900 0.950 0.750 0.900 0.950

0.20

125 0.762 0.955 0.985 0.894 0.939 0.966 0.906 0.954 0.966

250 0.836 0.973 0.988 0.935 0.969 0.982 0.929 0.960 0.973

500 0.907 0.975 0.981 0.941 0.970 0.989 0.967 0.984 0.990

1000 0.968 0.986 0.989 0.973 0.994 0.996 0.985 0.995 0.998

2000 0.980 0.991 0.997 0.987 0.994 0.996 0.987 0.996 0.998

4000 0.979 0.991 0.996 0.989 0.998 0.999 0.998 0.999 1.000

8000 0.963 0.989 0.995 0.993 0.997 0.999 0.997 0.998 0.999

16000 0.982 0.998 1.000 0.998 1.000 1.000 1.000 1.000 1.000

0.10

125 0.555 0.814 0.934 0.778 0.898 0.919 0.781 0.837 0.840

250 0.505 0.755 0.900 0.767 0.899 0.929 0.711 0.769 0.789

500 0.610 0.870 0.953 0.843 0.895 0.912 0.840 0.898 0.921

1000 0.823 0.974 0.983 0.847 0.926 0.965 0.900 0.946 0.963

2000 0.907 0.981 0.985 0.922 0.969 0.982 0.937 0.958 0.972

4000 0.956 0.980 0.983 0.947 0.969 0.979 0.953 0.975 0.987

8000 0.955 0.961 0.973 0.959 0.983 0.988 0.972 0.985 0.994

16000 0.957 0.969 0.989 0.969 0.984 0.992 0.986 0.995 0.998

0.05

125 0.365 0.443 0.491 0.441 0.471 0.473 0.443 0.456 0.456

250 0.300 0.368 0.442 0.385 0.468 0.476 0.363 0.379 0.382

500 0.403 0.672 0.828 0.690 0.833 0.868 0.651 0.731 0.770

1000 0.515 0.845 0.951 0.740 0.809 0.846 0.754 0.828 0.862

2000 0.582 0.905 0.963 0.799 0.871 0.912 0.830 0.885 0.909

4000 0.661 0.935 0.971 0.829 0.896 0.933 0.831 0.893 0.916

8000 0.778 0.942 0.956 0.860 0.925 0.955 0.903 0.938 0.954

16000 0.849 0.948 0.961 0.888 0.933 0.958 0.933 0.961 0.976

0.00

125 0.365 0.443 0.491 0.441 0.471 0.473 0.443 0.456 0.456

250 0.300 0.368 0.442 0.385 0.468 0.476 0.363 0.379 0.382

500 0.226 0.295 0.379 0.319 0.412 0.417 0.359 0.383 0.394

1000 0.150 0.222 0.316 0.264 0.358 0.389 0.303 0.329 0.343

2000 0.135 0.201 0.287 0.263 0.354 0.433 0.339 0.360 0.381

4000 0.125 0.184 0.261 0.218 0.294 0.362 0.300 0.319 0.337

8000 0.107 0.174 0.245 0.163 0.240 0.302 0.256 0.293 0.309

16000 0.064 0.123 0.162 0.154 0.227 0.287 0.198 0.225 0.249

Table 6. Empirical coverage of confidence regions for specification FE3.
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C n Mean Θ̂n St. Dev. Coverage dH

0.20

125 [ -2.822, -0.371 ] [ 0.613, 0.134 ] 0.92 0.74

250 [ -2.924, -0.428 ] [ 0.406, 0.113 ] 0.97 0.61

500 [ -2.947, -0.456 ] [ 0.336, 0.099 ] 0.98 0.57

1000 [ -2.987, -0.490 ] [ 0.170, 0.083 ] 0.99 0.51

2000 [ -2.994, -0.537 ] [ 0.114, 0.072 ] 1.00 0.45

4000 [ -3.000, -0.575 ] [ 0.000, 0.064 ] 1.00 0.41

8000 [ -3.000, -0.620 ] [ 0.000, 0.052 ] 1.00 0.37

16000 [ -3.000, -0.653 ] [ 0.000, 0.042 ] 1.00 0.33

0.10

125 [ -2.530, -0.452 ] [ 0.934, 0.152 ] 0.80 0.88

250 [ -2.387, -0.550 ] [ 1.003, 0.142 ] 0.73 0.91

500 [ -2.561, -0.564 ] [ 0.888, 0.125 ] 0.80 0.76

1000 [ -2.830, -0.581 ] [ 0.582, 0.103 ] 0.92 0.54

2000 [ -2.889, -0.632 ] [ 0.473, 0.086 ] 0.95 0.44

4000 [ -2.952, -0.662 ] [ 0.315, 0.073 ] 0.98 0.36

8000 [ -2.992, -0.700 ] [ 0.129, 0.057 ] 1.00 0.29

16000 [ -2.998, -0.730 ] [ 0.064, 0.049 ] 1.00 0.26

0.05

125 [ -1.849, -0.575 ] [ 1.185, 0.183 ] 0.51 1.32

250 [ -1.705, -0.647 ] [ 1.145, 0.161 ] 0.43 1.41

500 [ -2.215, -0.623 ] [ 1.073, 0.137 ] 0.65 0.99

1000 [ -2.472, -0.654 ] [ 0.937, 0.116 ] 0.76 0.76

2000 [ -2.532, -0.698 ] [ 0.890, 0.095 ] 0.78 0.68

4000 [ -2.586, -0.733 ] [ 0.843, 0.082 ] 0.81 0.61

8000 [ -2.716, -0.767 ] [ 0.716, 0.066 ] 0.86 0.47

16000 [ -2.840, -0.791 ] [ 0.554, 0.055 ] 0.92 0.34

0.00

125 [ -1.849, -0.575 ] [ 1.185, 0.183 ] 0.51 1.32

250 [ -1.705, -0.647 ] [ 1.145, 0.161 ] 0.43 1.41

500 [ -1.579, -0.706 ] [ 1.103, 0.150 ] 0.37 1.49

1000 [ -1.468, -0.757 ] [ 1.025, 0.126 ] 0.30 1.58

2000 [ -1.437, -0.804 ] [ 0.989, 0.111 ] 0.27 1.59

4000 [ -1.336, -0.832 ] [ 0.908, 0.093 ] 0.22 1.68

8000 [ -1.261, -0.866 ] [ 0.821, 0.077 ] 0.17 1.75

16000 [ -1.299, -0.893 ] [ 0.829, 0.063 ] 0.16 1.71

Table 7. Estimates for specification FE4 with β0 = −1.000 and Θ0 = [−3.000,−0.986].
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C n
m = n2/5 m = n3/5 m = n4/5

0.750 0.900 0.950 0.750 0.900 0.950 0.750 0.900 0.950

0.20

125 0.714 0.966 0.986 0.926 0.952 0.970 0.943 0.982 0.982

250 0.775 0.983 0.992 0.945 0.983 0.994 0.968 0.991 0.996

500 0.829 0.983 0.993 0.956 0.990 0.994 0.974 0.989 0.995

1000 0.862 0.992 0.997 0.969 0.995 0.998 0.996 0.999 1.000

2000 0.887 0.991 0.997 0.986 0.998 1.000 0.998 0.998 0.998

4000 0.950 0.998 1.000 0.992 0.997 0.998 0.999 1.000 1.000

8000 0.964 0.997 1.000 0.996 1.000 1.000 0.999 1.000 1.000

16000 0.983 0.997 1.000 1.000 1.000 1.000 1.000 1.000 1.000

0.10

125 0.599 0.845 0.966 0.847 0.932 0.938 0.829 0.876 0.879

250 0.547 0.788 0.924 0.776 0.934 0.944 0.817 0.879 0.886

500 0.556 0.882 0.966 0.858 0.928 0.953 0.872 0.940 0.953

1000 0.616 0.945 0.986 0.900 0.968 0.987 0.952 0.977 0.988

2000 0.627 0.947 0.984 0.937 0.978 0.994 0.981 0.990 0.995

4000 0.673 0.980 0.998 0.960 0.990 0.993 0.988 0.997 0.998

8000 0.710 0.984 0.998 0.984 0.993 0.998 0.989 0.997 0.999

16000 0.735 0.989 0.997 0.988 0.999 1.000 0.994 0.996 0.999

0.05

125 0.507 0.572 0.624 0.580 0.610 0.610 0.580 0.588 0.591

250 0.441 0.509 0.581 0.502 0.586 0.588 0.530 0.544 0.545

500 0.457 0.716 0.864 0.724 0.894 0.917 0.774 0.825 0.849

1000 0.434 0.790 0.924 0.793 0.896 0.922 0.834 0.895 0.926

2000 0.414 0.798 0.927 0.830 0.924 0.952 0.931 0.962 0.973

4000 0.394 0.828 0.950 0.880 0.953 0.975 0.916 0.957 0.975

8000 0.420 0.855 0.964 0.912 0.970 0.989 0.945 0.975 0.985

16000 0.370 0.874 0.973 0.923 0.981 0.992 0.962 0.983 0.986

0.00

125 0.507 0.572 0.624 0.580 0.610 0.610 0.580 0.588 0.591

250 0.441 0.509 0.581 0.502 0.586 0.588 0.530 0.544 0.545

500 0.384 0.444 0.513 0.478 0.544 0.551 0.513 0.528 0.534

1000 0.309 0.367 0.436 0.412 0.517 0.539 0.459 0.481 0.488

2000 0.278 0.327 0.393 0.331 0.425 0.488 0.491 0.508 0.519

4000 0.229 0.270 0.337 0.322 0.424 0.495 0.393 0.412 0.421

8000 0.199 0.232 0.272 0.279 0.360 0.434 0.359 0.380 0.391

16000 0.147 0.183 0.220 0.213 0.297 0.368 0.298 0.317 0.334

Table 8. Empirical coverage of confidence regions for specification FE4.

38



C n Mean Θ̂n St. Dev. Coverage dH

0.20

125 [ -0.399, 0.594 ] [ 0.411, 0.424 ] 0.74 0.56

250 [ -0.329, 0.568 ] [ 0.339, 0.332 ] 0.80 0.45

500 [ -0.292, 0.554 ] [ 0.298, 0.258 ] 0.85 0.38

1000 [ -0.206, 0.540 ] [ 0.270, 0.208 ] 0.89 0.28

2000 [ -0.129, 0.555 ] [ 0.226, 0.126 ] 0.97 0.19

4000 [ -0.063, 0.516 ] [ 0.169, 0.088 ] 0.98 0.09

8000 [ -0.019, 0.499 ] [ 0.101, 0.029 ] 1.00 0.02

16000 [ 0.001, 0.498 ] [ 0.032, 0.000 ] 1.00 0.00

0.10

125 [ -0.298, 0.477 ] [ 0.401, 0.413 ] 0.64 0.46

250 [ -0.210, 0.438 ] [ 0.333, 0.317 ] 0.67 0.33

500 [ -0.199, 0.445 ] [ 0.274, 0.253 ] 0.77 0.26

1000 [ -0.143, 0.464 ] [ 0.235, 0.208 ] 0.85 0.18

2000 [ -0.084, 0.485 ] [ 0.192, 0.138 ] 0.94 0.10

4000 [ -0.040, 0.488 ] [ 0.140, 0.085 ] 0.97 0.05

8000 [ -0.007, 0.497 ] [ 0.068, 0.022 ] 1.00 0.01

16000 [ 0.002, 0.498 ] [ 0.016, 0.000 ] 1.00 0.00

0.05

125 [ -0.168, 0.375 ] [ 0.427, 0.409 ] 0.52 0.38

250 [ -0.139, 0.372 ] [ 0.353, 0.323 ] 0.57 0.29

500 [ -0.161, 0.408 ] [ 0.279, 0.252 ] 0.71 0.23

1000 [ -0.120, 0.428 ] [ 0.234, 0.213 ] 0.80 0.16

2000 [ -0.071, 0.460 ] [ 0.179, 0.146 ] 0.91 0.08

4000 [ -0.033, 0.480 ] [ 0.129, 0.097 ] 0.96 0.04

8000 [ -0.003, 0.496 ] [ 0.052, 0.035 ] 0.99 0.01

16000 [ 0.003, 0.498 ] [ 0.000, 0.000 ] 1.00 0.00

0.00

125 [ -0.168, 0.375 ] [ 0.427, 0.409 ] 0.52 0.38

250 [ -0.139, 0.372 ] [ 0.353, 0.323 ] 0.57 0.29

500 [ -0.127, 0.372 ] [ 0.294, 0.256 ] 0.64 0.21

1000 [ -0.094, 0.400 ] [ 0.233, 0.213 ] 0.76 0.13

2000 [ -0.055, 0.444 ] [ 0.168, 0.160 ] 0.88 0.06

4000 [ -0.022, 0.474 ] [ 0.110, 0.108 ] 0.95 0.03

8000 [ -0.001, 0.495 ] [ 0.039, 0.039 ] 0.99 0.00

16000 [ 0.003, 0.498 ] [ 0.000, 0.000 ] 1.00 0.00

Table 9. Estimates for specification MPH1 with β0 = 0.100 and Θ̃0 = [0.003, 0.498].
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A. Notation and Preliminary Results

First we introduce some notation. We shall make use of a modified signum function sgn(x) where

sgn(x) =

−1 if x < 0,

1 if x ≥ 0.

This definition, which is standard in the maximum score literature, differs from the common definition only
at zero, where we define sgn(0) = 1 instead of sgn(0) = 0. We write a ∨ b to denote max{a, b} and a ∧ b to
denote min{a, b}.

Let l∞(B) denote the space of uniformly bounded, real-valued functions on B endowed with the uniform
metric d∞(g, h) ≡ supθ∈Θ |g(θ)− h(θ)|. Let Gn =

√
n(Pn − P) denote the standardized empirical process.

Lemma 9. Let {Xn} be a sequence of random variables defined on a probability space (Ω,F , P) and let X be a random
variable defined on the same space. Then Xn = X with probability approaching one6 if and only if for any positive
sequence rn with rn → ∞, rn(Xn − X)

p→ 0.

Proof of Lemma 9. Suppose that Xn = X with probability approaching one and let ε > 0. Given any positive
sequence rn, for all n we have

P(Xn 6= X) = P(|Xn − X| > ε/rn) + P(|Xn − X| ≤ ε/rn)

≥ P(|Xn − X| > ε/rn)

= P(|rn(Xn − X)| > ε)

Since limn→∞ P(Xn 6= X)→ 0 and P(Xn 6= X) ≥ P(|rn(Xn − X)| > ε) ≥ 0, it follows that limn→∞ P(|rn(Xn − X)| >
ε) = 0.

Now, suppose that for all positive sequences rn with rn → ∞, rn(Xn − X)
p→ 0. Let ε > 0 and observe that

P(Xn = X) = P(rnXn = rnX)

= P(rn(Xn − X) = 0)

= 1− P(rn(Xn − X) 6= 0)

= 1− P(|rn(Xn − X)| ≥ 0)

= 1− P(|rn(Xn − X)| ≥ ε)− P(0 < |rn(Xn − X)| < ε)

The first probability above is o(1) while the second can be made arbitrarily small by choice of ε. Therefore,
limn→∞ P(Xn = X) = 1. �

Lemma 10. Let f and g be bounded real functions on A ⊂ Rn. Then∣∣∣∣∣sup
x∈A

f (x)− sup
x∈A

g(x)

∣∣∣∣∣ ≤ sup
x∈A
| f (x)− g(x)| .

Proof of Lemma 10. First, note that for all x ∈ A,

(11) f (x)− sup
y∈A

g(y) ≤ f (x)− g(x) ≤ | f (x)− g(x)|

and

(12) sup
y∈A

f (y)− g(x) ≥ f (x)− g(x) ≥ − | f (x)− g(x)| .

6That is, limn→∞ P({ω ∈ Ω : Xn(ω) = X(ω)}) = 1.
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We prove the result by showing that

− sup
x∈A
| f (x)− g(x)| ≤ sup

x∈A
f (x)− sup

x∈A
g(x) ≤ sup

x∈A
| f (x)− g(x)| .

For the right hand side:

sup
x∈A

f (x)− sup
x∈A

g(x) = sup
x∈A

[
f (x)− sup

y∈A
g(y)

]
≤ sup

x∈A
| f (x)− g(x)| .

The equality holds since sup g is constant with respect to x and the inequality follows from (11), since it holds
for all x. Similarly, the left hand side follows from (12):

sup
x∈A

f (x)− sup
x∈A

g(x) = sup
x∈A

f (x) + inf
x∈A

(−g(x))

= inf
x∈A

[
sup
y∈A

f (y)− g(x)

]
≥ inf

x∈A
− | f (x)− g(x)|

= − sup
x∈A
| f (x)− g(x)|

Together, these two inequalities imply the result. �

B. Estimation and Inference in General Models

B.1. Proof of Theorem 1

The proof proceeds in two steps. In the first step, we show that supθ∈Θ̂n
ρ(θ, Θ1)

p→ 0. The second step shows
that limn→∞ P(Θ1 ⊂ Θ̂n) = 1. Combining these steps and using the definition of the Hausdorff distance
yields the final conclusion of the theorem.

Step 1 For any ε > 0,

sup
Θ\Θε

1

Qn ≤ sup
Θ\Θε

1

Q + op(1) ≤ sup
Θ

Q− δε + op(1),

where δε > 0. The first inequality above follows from A3, giving uniform convergence in probability of Qn to
Q. The second inequality follows from A2, since Θ1 maximizes Q. Similarly,

inf
Θ̂n

Qn ≥ sup
Θ

Qn − τn ≥ sup
Θ

Q− τn + op(1)

The first inequality follows from the definition of Θ̂n and the second follows again from uniform convergence.
By assumption, τn = op(1), and since δε > 0, with probability approaching one, τn < δε, or equivalently,
supΘ Q− τn + op(1) ≥ supΘ Q− δε + op(1). Given the inequalities above, this implies infΘ̂n

Qn ≥ supΘ\Θε
1

Qn,
which in turn implies that Θn ⊆ Θε

1, and so supθ∈Θ̂n
ρ(θ, Θ1) ≤ ε.
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Step 2 By definition of Θ̂n and τn, we know that if bnτn ≥ supΘ bnQn − infΘ1 bnQn, then Θ1 ⊆ Θ̂n. We have

sup
Θ

Qn − inf
Θ1

Qn =

[
sup

Θ
Qn − sup

Θ
Q

]
+

[
sup

Θ
Q− inf

Θ1
Qn

]

≤
∣∣∣∣∣sup

Θ
Qn − sup

Θ
Q

∣∣∣∣∣+
∣∣∣∣∣sup

Θ
Q− inf

Θ1
Qn

∣∣∣∣∣
=

∣∣∣∣∣sup
Θ

Qn − sup
Θ

Q

∣∣∣∣∣+
∣∣∣∣∣sup

Θ1

Q− inf
Θ1

Qn

∣∣∣∣∣
≤ sup

Θ
|Qn −Q|+ sup

Θ1

|Qn −Q|

≤ sup
Θ
|Qn −Q|+ sup

Θ
|Qn −Q|

These steps follow by, respectively, adding and subtracting supΘ Q, taking the absolute value, noting that
Θ1 maximizes Q, using the fact that inf f = − sup− f , and applying Lemma 10 twice (see Appendix A),
noting that Θ1 ⊆ Θ. By A3, supΘ |Qn −Q| = Op(1/bn) and so the requirement that bnτn

p→ ∞ (i.e., that τn

approaches zero in probability slower than 1/bn) implies that τn ≥ 2 supΘ |Qn −Q| ≥ supΘ Qn − infΘ1 Qn

with probability approaching one.

B.2. Proof of Theorem 2

From Theorem 1, limn→∞ P(Θ1 ⊆ Θ̂n) = 1. We will prove the result by showing that limn→∞ P(Θ̂n ⊆ Θ1) = 1
and therefore the Hausdorff distance dH(Θ̂n, Θ1) eventually equals zero with probability approaching one.

Uniform convergence at the bn rate, from A3, implies Qn(θ) ≤ Q(θ) + Op(1/bn) and Q(θ) ≤ Qn(θ) +

Op(1/bn). It follows that

sup
Θ\Θ1

Qn ≤ sup
Θ\Θ1

Q + Op(1/bn) ≤ sup
Θ

Q− δ + Op(1/bn) ≤ sup
Θ

Qn − δ + Op(1/bn),

where the second inequality follows from the constant majorant condition.
Since τn converges to zero in probability and δ > 0 is constant, with probability approaching one,

τn < δ. Thus, with probability approaching one, −δ < −τn, supΘ\Θ1
Qn ≤ supΘ Qn − τn + Op(1/bn) ≤

infΘ̂n
Qn + Op(1/bn), and therefore, Θ̂n ⊆ Θ1.

B.3. Proof of Theorem 3

For any ε > 0, let δ, κ0, κ1, γ1, γ2, κε, and nε satisfy A5 and define

νn ≡
(

κ1 · κε ∨ 2τn · bn

bn · κ1

)1/γ1

where bn is given by A3 and bnτn
p→ ∞ by construction. Furthermore, by Assumption A3, κ0 = supΘ Q. By

definition of νn, we have νn = op(1) and

ν
1/γ2
n ≥

(
κε

bn

) 1
γ1γ2 ≥ κε

bn
,

since γ1γ2 ≥ 1. Therefore, there exists an n′ε ≥ nε such that for all n ≥ n′ε, with probability at least 1− ε we
have both νn ≤ δ and νn ≥ (κε/bn)γ2 . Therefore, by A3 and A5,

sup
Θ\Θνn

1

Qn ≤ sup
Θ

Q− κ1 · (νn ∧ δ)γ1 ≤ sup
Θ

Q− κ1 · ν
γ1
n = sup

Θ
Q− 2 · τn ≤ sup

Θ
Qn − τn ≤ inf

Θ̂n

Qn.
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This implies that Θ̂n ∩ (Θ \Θνn
1 ) is empty, or equivalently, that Θ̂n ⊆ Θνn

1 . Therefore, in light of Step 1 of
the proof of Theorem 1, which shows that limn→∞ P(Θ1 ⊆ Θ̂n) = 1, we have dH(Θ̂n, Θ1) ≤ νn and therefore
dH(Θ̂n, Θ1) = Op(τ

γ2
n ).

B.4. Proof of Theorem 4

Before proceeding with the proof, we first establish the following two lemmas.

Lemma 11. If A7 holds, then for any sequence ĉn such that ĉn
p→ c(1− α) ≡ inf{c : P{R ≤ c} ≥ 1− α} for some

α ∈ (0, 1),

P{Θ1 ⊆ Cn(ĉn)} ≥ (1− α) + op(1).

Proof of Lemma 11. Observe that

P{Θ1 ⊆ Cn(ĉn)} = P{Rn ≤ ĉn} = P{R ≤ c(1− α)}+ op(1) ≥ (1− α) + op(1).

The first equality holds by definition of Cn and Rn, the second by A7 and ĉn
p→ c(1− α), and the third by

definition of c(1− α). �

Lemma 12. Suppose A7 holds, let Θn be a sequence of subsets of Θ such that dH(Θn, Θ1) converges to zero arbitrarily
fast in probability, and let R′n = supΘ bnQn − infΘn bnQn. Then P(R′n ≤ c)→ P(R ≤ c) for each c ∈ R.

Proof of Lemma 12. For all ε > 0, there exists an nε such that for all n ≥ nε, P(Θn = Θ1) ≥ 1− ε. Then,

P
(

infΘn n1/2Qn = infΘ1 n1/2Qn

)
≥ 1 − ε. From A7, we have that that infθ∈Θ1 n1/2Qn

d→ R. Therefore,

R′n
d→ R. �

The proof of Theorem 4 proceeds in three steps. First, we derive upper and lower bounds for R̂n,m,j such
that Rn,m,j ≤ R̂n,m,j ≤ Rn,m,j with probability approaching one. Next, we prove that the empirical distribution
function of R̂n,m,j converges in probability to the distribution function of R, the limiting distribution of Rn.
Finally, we show that ĉn converges in probability to c(1− α), the desired quantile of the distribution of R.

Step 1 By Theorem 2, we have dH(Cn(κn), Θ1) = 0 with probability approaching one and thus, dH(Cn(κn), Θ1) ≤
εn for some sequence εn which converges to zero arbitrarily fast in probability. For a fixed subsample j,
let Rn,m,j ≡ supθ∈Θ bmQn,m,j(θ)− infθ∈Θεn

1
bmQn,m,j(θ). Let Kn be the collection of all subsets K ⊆ Θ such

that dH(K, Θ1) ≤ εn and define Rn,m,j ≡ supK∈Kn

[
supθ∈Θ bmQn,m,j(θ)− infθ∈K bmQn,m,j(θ)

]
. There exists a

set Θn,m,j ∈ Kn such that Rn,m,j is equal to infθ∈Θn,m,j bmQn,m,j(θ). With probability approaching one, since
Cn(κn) ⊆ Θεn

1 and Cn(κn) ∈ Kn, we have Rn,m,j ≤ R̂n,m,j ≤ Rn,m,j for all j = 1, . . . , Mn.

Step 2 From Step 1, with probability approaching one,

Gn,m(x) ≡ M−1
n

Mn

∑
j=1

1{Rn,m,j ≤ x} ≤ Ĝn,m(x) ≡ M−1
n

Mn

∑
j=1

1{R̂n,m,j ≤ x}

≤ Gn,m(x) ≡ M−1
n

Mn

∑
j=1

1{Rn,m,j ≤ x}.

We will show that Gn,m(x)
p→ P{R ≤ x} and Gn,m(x)

p→ P{R ≤ x} as n→ ∞ (and thus, m→ ∞). Therefore,

Ĝn,m(x)
p→ P{R ≤ x} for each x ∈ R.
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Let Jm(x) denote the cdf of Rn,m,j. Note that Gn,m(x) is a U-statistic of degree m with 0 ≤ Gn,m(x) ≤ 1
(i.e., it is bounded). Furthermore, E[Gn,m(x)] = E[1{Rn,m,j ≤ x}] = Jm(x), where the last equality holds by
nonreplacement sampling, since each subsample of size m is itself an iid sample. Under A6, by the Hoeffding
inequality for bounded U-statistics for iid data (Serfling, 1980, Theorem A, p. 201), for any t > 0,

P
{

Gn,m(x)− Jm(x) ≥ t
}
≤ exp

[
−2t2 n

m

]
.

A similar inequality follows for t < 0 by considering the U-process −Gn,m(x). Therefore, Gn,m(x) =

Jm(x) + op(1) for fixed m. Finally, since Rn,m,j is obtained from sets satisfying the assumptions of Lemma 12,
we have Jm(x) = P{Rn,m,j ≤ x} = P{R ≤ x}+ op(1).

A similar argument shows that Gn,m(x)
p→ P{R ≤ x} as well, and therefore, Ĝn,m(x)

p→ P{R ≤ x}.

Step 3 Convergence of the distribution function at continuity points implies convergence of the quantile

function at continuity points (cf. Shorack, 2000, Proposition 3.1). Therefore, ĉn = inf{x : Ĝ(x) ≥ 1− α} p→
c(1− α).

C. Sufficient Conditions

C.1. Proof of Lemma 4

We show the result by verifying the conditions of Theorem 3. Since C1 implies A1, C2 implies A2, and, as
shown in Lemma 2, C3 is sufficient for A3 with bn = n1/2, it suffices to establish A5.

By definition of Gn(θ), we can always write

(13) Qn(θ) = (Pn − P) f (·, θ) + P f (·, θ) = n−1/2Gn(θ) + Q(θ).

Choose ζ smaller than the minimum of ν and η0. Recall that C2 implies A2, so there exists a δζ > 0 such that

(14) sup
Θ\Θζ

1

Q ≤ sup
Θ

Q− 2δζ .

Combining (13) and (14) and using A3 gives, for all θ ∈ Θ \Θζ
1,

Qn(θ) ≤ n−1/2Gn(θ) + sup
Θ

Q− 2δζ .

F is P-Donsker by C3 and since supΘ |·| is continuous on l∞(Θ), supΘ |Gn(θ)| = Op(1) by the continuous
mapping theorem. It follows that for any ε1 ∈ (0, 1) there exists an n1 so that for all n ≥ n1,

(15) Qn(θ) ≤ sup
Θ

Q− δζ

uniformly on Θ \Θζ
1 with probability at least 1− ε1.

Now, by C4, there is a neighborhood Θν
1 of Θ1 such that Q is approximately quadratic in the distance

ρ(θ, Θ1). That is,

Q(θ) ≤ sup
Θ

Q− K1 · ρ2(θ, Θ1)

for all θ ∈ Θν
1 . Similarly, by C5 and Lemma 4.1 of Kim and Pollard (1990), for all K2 > 0 there exists a sequence

of random variables Mn = Op(1) such that

(Pn − P) f (·, θ) ≤ K2 · ρ2(θ, Θ1) + n−2/3 M2
n
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for θ ∈ Θη0
1 . Combining these results for K2 = K1/2 and using (13) and A3 yields

Qn(θ) ≤ sup
Θ

Q− K1
2
· ρ2(θ, Θ1) + n−2/3 M2

n

for all θ ∈ Θν∧η0
1 , where Mn and Rn are both Op(1).

Notice that when n−2/3 M2
n is smaller than K1/2 · ρ2(θ, Θ1), we have

(16) Qn(θ) ≤ sup
Θ

Q− K1
4

ρ2(θ, Θ1),

which is a polynomial majorant of the form required by A5. This is true whenever ρ(θ, Θ1) ≥ 2K−1/2
1 n−1/3 Mn.

Since Mn = Op(1), for any ε2 ∈ (0, 1), there exists a K3 and n2 such that for all n ≥ n2, ρ(θ, Θ1) ≥ K3n−1/3 ≥
2K−1/2

1 n−1/3 Mn and the bound in (16) holds uniformly on Θζ
1 \ ΘK3n−1/3

1 . with probability at least 1− ε2.
(Note that we can always choose n2 large enough so that K3n−1/3 is smaller than ζ < ν ∧ η0, ensuring that the
relevant region of the domain is nonempty.)

To show that A5 holds, let ε ∈ (0, 1) be given. For ε1 = ε/2, choose n1 and δζ as above so that (15) holds
uniformly on Θ \Θζ

1 with probability at least 1− ε1, where ζ < ν ∧ η0. Then, for ε2 = ε/2, choose n2 and K3

such that (16) holds uniformly on Θζ
1 \ΘK3n−1/3

1 with probability at least 1− ε2.
To summarize, we have shown that

Qn(θ) ≤ sup
Θ

Q−max
{

K1
4

ρ2(θ, Θ1), δζ

}
uniformly on Θ \ΘK3n−1/3

1 with probability at least 1− ε. It follows that A5 holds with bn = n1/2, δ = δζ ,
c0 = supΘ Q, c1 = K1

4 , γ1 = 2, γ2 = 2/3, cε = K3, and nε = max{n1, n2}. Therefore, for any sequence rn such

that rn = o(n1/3), let τn ∝ r−3/2
n . Since n1/3r−1

n → ∞, (n1/3r−1
n )3/2 = n1/2r−3/2

n ∝ n1/2τn
p→ ∞ and therefore

Theorem 3 implies dH(Θ̂n, Θ1) = Op(τ
γ2
n ) = Op(τ

2/3
n ) = Op(rn).

D. Fixed Effects Model

D.1. Proof of Theorem 5

For the proof, let Θ0 denote the true identified set defined in (1) and let Θ̃0 denote the set on the right side of
(6). We first show Θ0 ⊆ Θ̃0, and then Θ̃0 ⊆ Θ0.

Step 1 Let θ ∈ Θ0. By definition of Θ0, there exist distributions Fu0|xc and Fc|x such that π(yt = 1 |
x; β, Fu0|xc, Fc|x) = P(yt = 1 | x) Fx-almost surely for t = 0, 1. Conditioning on c, we have P(y0 = 1 | x, c) =
1− Fu0|xc(−x′0β− c) and P(y1 = 1 | x, c) = 1− Fu0|xc(−x′1β− c). By the monotonicity of Fu0|xc,

P(y1 = 1 | x, c) ≥ P(y0 = 1 | x, c) ⇐⇒ 1− Fu0|xc(−x′1β− c) ≥ 1− Fu0|xc(−x′0β− c)

⇐⇒ Fu0|xc(−x′1β− c) ≤ Fu0|xc(−x′0β− c)

⇐⇒ −x′1β− c ≤ −x′0β− c

⇐⇒ (x1 − x0)
′β ≥ 0

The third line follows from the assumption that the support of ut is R.7 Since this event is independent of c,
we have

P(y1 = 1 | x)− P(y0 = 1 | x) ≥ 0 ⇐⇒ (x1 − x0)
′β ≥ 0,

7For any random variable Z, FZ(z1) ≤ FZ(z2) implies z1 ≤ z2 only on the support of Z.
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or, equivalently,

sgn (P(y1 = 1 | x)− P(y0 = 1 | x)) = sgn
(
(x1 − x0)

′β
)

.

Therefore, θ ∈ Θ0 ⇒ θ ∈ Θ̃0.

Step 2 Now, suppose θ ∈ Θ̃0. We will show that for each such θ, given population distributions P(yt | x)
for t = 0, 1, there are values of the remaining free model primitives—the cdfs Fu0|xc and Fc|x—such that the
implications of the model coincide with the true population values P(y0 = 0 | x) and P(y1 = 0 | x).

First, note that we do not need to consider the events y0 = 1 or y1 = 1 since in each time period, the
(binary) choice probabilities must sum to one. Thus, we need to show that there exist distributions Fu0|xc and
Fc|x such that for Fx-almost every x the model implications align with the population choice probabilities:

P(y0 = 0 | x) = π(y0 = 0 | x; θ, Fu0|xc, Fc|x)

P(y1 = 0 | x) = π(y1 = 0 | x; θ, Fu0|xc, Fc|x)

For a given x and for primitives (θ, Fu0|xc, Fc|x), the model implications are:

π(y0 = 0 | x; θ, Fu0|xc, Fc|x) =
∫

Fu0|xc(−x′0β− c) dFc|x

π(y1 = 0 | x; θ, Fu0|xc, Fc|x) =
∫

Fu0|xc(−x′1β− c) dFc|x

Fix x. It will suffice to construct a distribution Fc|x with only a single mass point c∗(x) (conditional on
each fixed value of x):

Fc|x(c) =

0 if c < c∗(x),

1 if c ≥ c∗(x).

Suppose that P(y1 = 1 | x) < P(y0 = 1 | x) (the opposite case follows similarly). Then our choice of
θ ∈ Θ̃0 guarantees that β is such that x′1β < x′0β. We can rewrite these two inequalities equivalently as
P(y0 = 0 | x) < P(y1 = 0 | x) and −x′0β < −x′1β. Thus, the following choice for Fu0|xc is a valid cdf:

Fu0|xc(u) =



0 if u < −x′1β− c∗(x),

P(y0 = 0 | x) if − x′0β− c∗(x) ≤ u ≤ −x′1β− c∗(x),

P(y1 = 0 | x) if − x′1β− c∗(x) ≤ u < ū,

1 if u ≥ ū,

for any ū > −x′1β− c∗(x). Essentially, we only need to choose a cdf that passes through the two points(
−x′0β− c∗(x), P(y0 = 0 | x)

)
and

(
−x′1β− c∗(x), P(y1 = 0 | x)

)
and there are an infinite number of such

cdfs, as illustrated by Figure 6.
Given the above cdfs, we have:

π(y0 = 0 | x; θ, Fu0|xc, Fc|x) = Fu0|xc(−x′0β− c∗(x)) = P(y0 = 0 | x),

π(y1 = 0 | x; θ, Fu0|xc, Fc|x) = Fu0|xc(−x′1β− c∗(x)) = P(y1 = 0 | x).

Therefore θ ∈ Θ0, and since θ ∈ Θ̃0 was chosen arbitrarily, Θ̃0 ⊆ Θ0.

D.2. Proof of Lemma 6

Define w = x1 − x0, z = y1 − y0, and Θ1 = arg maxθ∈Θ Q(θ).
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Fu0|xc

u

P(y0 = 0 | x)

P(y1 = 0 | x)

−x′0β− c∗(x) −x′1β− c∗(x)

Figure 6. Two distributions Fu0|xc with equivalent observable implications under Fc|x.

Step 1 Let θ1 ∈ Θ0 and θ2 ∈ Θ. We will show that Θ0 ⊆ Θ1 by proving that, for arbitrary choices of θ1 and
θ2, Q(θ1) ≥ Q(θ2).

Consider the difference

Q(θ1)−Q(θ2) = E
[
z sgn(w′β1)

]
− E

[
z sgn(w′β2)

]
= E

[
z
(
sgn(w′β1)− sgn(w′β2)

)]
= 2

∫
D(θ1,θ2)

sgn(w′β1)E [z | x, c] dFxc

where D(θ1, θ2) = {(x, c) : sgn(w′β1) 6= sgn(w′β2)} is the set of values of x and c where sgn(w′β1) and
sgn(w′β2) differ. The last equality above follows from the fact that the integrand vanishes on complement of
D(θ1, θ2), and that on D(θ1, θ2) we have sgn(w′β1) = − sgn(w′β2), implying that sgn(w′β1)− sgn(w′β2) =

2 sgn(w′β1). Since θ1 ∈ Θ0, Theorem 5 guarantees that

sgn(w′β1) = sgn (P(y1 = 1 | x, c)− P(y0 = 1 | x, c)) = sgn E(z | x, c)

Fxc-almost surely. Rewriting the above difference,

Q(θ1)−Q(θ2) = 2
∫

D(θ1,θ2)
|E[z | x, c]| dFxc ≥ 0

for all θ2. Therefore, Θ0 ⊆ Θ1.

Step 2 Now, let θ1 ∈ Θ0 and suppose there exists a θ2 ∈ Θc
0 ∩Θ1. We will use the definition of Θ0 to show

that Q(θ2) < Q(θ1), contradicting the assumption that θ2 ∈ Θ1, and guaranteeing that Θc
0 ∩ Θ1 = ∅, or

equivalently, Θ1 ⊆ Θ0.
First, note that we can rewrite Q(θ) as follows:

Q(θ) = E[z sgn(w′β)]

= Exc Ez|wc[z sgn(w′β)]

= Exc
[
(P(y1 = 1 | x, c)− P(y0 = 1 | x, c))

(
1{w′β ≥ 0} − 1{w′β < 0}

)]
=
∫
{w′β≥0}

(P(y1 = 1 | x, c)− P(y0 = 1 | x, c)) dFxc

+
∫
{w′β<0}

(P(y0 = 1 | x, c)− P(y1 = 1 | x, c)) dFxc

The first equality is definitional, the second is an application of the law of iterated expectations, and the third
follows from the definition of z and the signum function. In the fourth line, the expectations of the indicator
functions are expressed as integrals over the corresponding regions of the support of x.
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Now, consider the difference Q(θ2)−Q(θ1):

Q(θ2)−Q(θ1) =
∫
{w′β2≥0}

(P(y1 = 1 | x, c)− P(y0 = 1 | x, c)) dFxc

+
∫
{w′β2<0}

(P(y0 = 1 | x, c)− P(y1 = 1 | x, c)) dFxc

−
∫
{w′β1≥0}

(P(y1 = 1 | x, c)− P(y0 = 1 | x, c)) dFxc

−
∫
{w′β1<0}

(P(y0 = 1 | x, c)− P(y1 = 1 | x, c)) dFxc

Over regions where w′β2 and w′β1 have the same sign, the difference is zero, therefore

Q(θ2)−Q(θ1) =
∫
{w′β2≥0,w′β1<0}

(P(y1 = 1 | x, c)− P(y0 = 1 | x, c)) dFxc

−
∫
{w′β2<0,w′β1≥0}

(P(y1 = 1 | x, c)− P(y0 = 1 | x, c)) dFxc

From the proof of Theorem 5, we know that for θ1 ∈ Θ0,

P(y1 = 1 | x, c)− P(y0 = 1 | x, c) ≥ 0 ⇐⇒ w′β1 ≥ 0

and for θ2 ∈ Θc
0,

P(y1 = 1 | x, c)− P(y0 = 1 | x, c) < 0 ⇐⇒ w′β2 ≥ 0.

This implies that the first term in the difference above is strictly negative and the second term, which is being
subtracted, is weakly non-negative. Thus, Q(θ2) < Q(θ1). This contradicts the choice of θ2, meaning that
Θc

0 ∩Θ1 = ∅ and therefore it must be the case that Θ1 ⊆ Θ0.

D.3. Proof of Theorem 6

Assumptions C1 and C2 were verified in the text. It remains to show that F is manageable for an envelope F
for which PF2 < ∞.

Let D ⊂ Rd denote the support of w and let X = {−1, 0, 1} × D denote the support of (z, w). For each
(z, w) ∈ X and for each real number t, α, and γ, and real vector δ ∈ Rd, define

g(z, w, t, α, γ, δ) = αt + γz + δ′w

and define

G =
{

g(·, ·, ·, α, γ, δ) : α, γ ∈ R and δ ∈ Rd
}

.

Since G is a vector space of real-valued functions on X ×R, by Lemma 2.4 of Pakes and Pollard (1989), classes
of sets of the form {g ≥ r} or {g > r} with g ∈ G and r ∈ R are VC classes. We will show that F is Euclidean
by showing that it is a VC subgraph class, that is, that the collection of subgraphs of functions in F is a VC
class. To accomplish this, we will use Lemma 2.5 of Pakes and Pollard (1989) which states that, in particular,
if C1 and C2 are VC classes, then so are {C1 ∩ C2 : C1 ∈ C1, C2 ∈ C2}, {C1 ∪ C2 : C1 ∈ C1, C2 ∈ C2}, and
{Cc

1 : C1 ∈ C1}.
First, note that we can rewrite f as

f (z, w, θ) = (1{z > 0} − 1{z < 0}) ·
(
1{w′β ≥ 0} − 1{w′β < 0}

)
= 1{z > 0, w′β ≥ 0} − 1{z > 0, w′β < 0}

− 1{z < 0, w′β ≥ 0}+ 1{z < 0, w′β < 0}.
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Now, for any θ ∈ Θ,

subgraph( f (·, ·, θ)) = {(z, w, t) ∈ X ×R : 0 < t < f (z, w, θ) or 0 > t > f (z, w, θ)}

=
(
{z > 0} ∩ {w′β ≥ 0} ∩ {t ≥ 1}c ∩ {t > 0}

)
∪
(
{z > 0} ∩ {w′β ≥ 0}c ∩ {t ≥ −1} ∩ {t ≥ 0}c)

∪
(
{z ≥ 0}c ∩ {w′β ≥ 0} ∩ {t ≥ −1} ∩ {t ≥ 0}c)

∪
(
{z ≥ 0}c ∩ {w′β ≥ 0}c ∩ {t ≥ 1}c ∩ {t > 0}

)
= ({g1 > 0} ∩ {g2 ≥ 0} ∩ {g3 ≥ 1}c ∩ {g3 > 0})

∪ ({g1 > 0} ∩ {g2 ≥ 0}c ∩ {g3 ≥ −1} ∩ {g3 ≥ 0}c)

∪ ({g1 ≥ 0}c ∩ {g2 ≥ 0} ∩ {g3 ≥ −1} ∩ {g3 ≥ 0}c)

∪ ({g1 ≥ 0}c ∩ {g2 ≥ 0}c ∩ {g3 ≥ 1}c ∩ {g3 > 0})

where gk(z, w, t) = αkt + γkz + δ′kw ∈ G for each k with, α1 = 0, γ1 = 1, δ1 = 0, α2 = 0, γ2 = 0, δ2 = β, α3 = 1,
γ3 = 0, and δ3 = 0. The collection of sets of the form {g ≥ 0} or {g > 0} is a VC class by Lemma 2.4 of Pakes
and Pollard (1989). Furthermore, this property is preserved over complements, unions, and intersections of
VC classes by their Lemma 2.5. Therefore, {subgraph( f ) : f ∈ F} is a VC class, and by Lemma 2.12 of Pakes
and Pollard (1989), F is Euclidean for every envelope. In particular, F is Euclidean for the constant envelope
F = 1. Since it is Euclidean, F is also manageable in the sense of Pollard (1989) (cf. Pakes and Pollard, 1989, p.
1033) as required by C3.

D.4. Proof of Lemma 7

First, note that we can rewrite n1/2Qn as

n1/2Qn(θ) = n1/2(Pn fθ − P fθ) + n1/2P fθ = Gn( fθ) + n1/2P fθ ,

and therefore,

Rn ≡ inf
θ∈Θ0

n1/2Qn(θ) = inf
θ∈Θ0

(
Gn( fθ) + n1/2P fθ

)
.

Supposing, without loss of generality, that Q is normalized so that it is identically zero on Θ0, since the map
infΘ0 , which takes real functions on Θ into R, is continuous in `∞(F ), the continuous mapping theorem gives

Rn
d→ infθ∈Θ0 G( fθ) ≡ R.

D.5. Proof of Theorem 8

Assumptions C1–C3 have been established by Theorem 6. We show that Assumptions C4 and C5 hold, and
the conclusion follows from Lemma 4.

Under the maintained assumptions, it follows by generalizing the arguments of Abrevaya and Huang
(2005) to the set identified case that ∇θθ′ Q(θ) = −V(θ) for all θ ∈ bd(Θ0). Therefore, in a neighborhood N
of Θ0, Q is approximately quadratic and for some C > 0, Q(θ) ≤ sup Q− C · ρ2(θ, Θ0).

To show C5, let η > 0 and define Fη ≡ { f (·, θ) ∈ F : ρ(θ, Θ0) ≤ η}. We will show that Fη is a VC
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subgraph class with envelope Fη such that PF2
η = O(η). For any f ∈ Fη and any β̄ ∈ Θ0,

F2
η (w, y, θ) ≤ 1{w̃′β ≥ −wk > w̃′ β̄}+ 1{w̃′ β̄ ≥ −wk > w̃′β}

≤ 1{w̃′(β− β̄) ≥ −wk − w̃′ β̄ > 0}+ 1{0 ≥ −wk − w̃′ β̄ > w̃′(β− β̄)}

≤ 1{−w̃′(β− β̄) ≤ w̃′ β̄ + wk < 0}+ 1{0 ≤ w̃′ β̄ + wk < w̃′(β− β̄)}

≤ 1{−w̃′(β− β̄) ≤ w̃′ β̄ + wk < w̃′(β− β̄)}

≤ 1{− ‖w̃‖ ·
∥∥β− β̄

∥∥ ≤ w̃′ β̄ + wk < ‖w̃‖ ·
∥∥β− β̄

∥∥}.
In particular, the above inequality holds when β̄ is the nearest neighbor to β in Θ0, with

∥∥β− β̄
∥∥ = ρ(β, Θ0) ≤

η. Therefore F2
η (x, y, θ) ≤ 1{− |η| ‖w̃‖ ≤ w̃′ β̄ + wk < η ‖w̃‖} and

PF2
η ≤

∫
W̃

∫
W1∪{wk :−η‖w̃‖≤w̃′ β̄+wk<η‖w̃‖}

dG(wk | w̃) dG(w̃)

≤
∫
W̃

sup g(wk | w̃) · 2η ‖w̃‖ dG(w̃).

Since w has finite first absolute moments and bounded density, this integral is finite and the envelope satisfies
PF2

η = O(η).

E. Lagged Dependent Variable Model

E.1. Proof of Theorem 9

Letting G denote Fu0|xc for simplicity, the probabilities of the events A and B can be written as follows:

P(A | x, c, x2 = x3) = p0(x, c)1−d0 (1− p0(x, c))d0 G(−x′1β− γd0 − c)

×
[
1− G(−x′2β− c)

]
G(−x′2β− γ− c)1−d3

×
[
1− G(−x′2β− γ− c)

]d3 ,

P(B | x, c, x2 = x3) = p0(x, c)1−d0 (1− p0(x, c))d0
[
1− G(−x′1β− γd0 − c)

]
× G(−x′2β− γ− c)G(−x′2β− c)1−d3

×
[
1− G(−x′2β− c)

]d3 .

Note that the latter probability is nonzero since ut has full support on R for all t and since p0(x, c) > 0.
Dividing, we have

P(A | x, c, x2 = x3)

P(B | x, c, x2 = x3)
=

G(−x′1β− γd0 − c)
G(−x′2β− γ− c)

×
1− G(−x′2β− c)

1− G(−x′1β− γd0 − c)

×
[

G(−x′2β− γ− c)
G(−x′2β− c)

]1−d3

×
[

1− G(−x′2β− γ− c)
1− G(−x′2β− c)

]d3

.

When d3 = 0,

P(A | x, c, x2 = x3)

P(B | x, c, x2 = x3)
=

G(−x′1β− γd0 − c)
G(−x′2β− γd3 − c)

×
1− G(−x′2β− γd3 − c)
1− G(−x′1β− γd0 − c)

,

and when d3 = 1,

P(A | x, c, x2 = x3)

P(B | x, c, x2 = x3)
=

G(−x′1β− γd0 − c)
G(−x′2β− γd3 − c)

×
1− G(−x′2β− γd3 − c)
1− G(−x′1β− γd0 − c)

.
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We have used the fact that when d3 = 0, γd3 = 0, and when d3 = 1, γd3 = γ. In both cases, by the
monotonicity of G,

P(A | x, c, x2 = x3) ≥ P(B | x, c, x2 = x3) ⇐⇒ −x′1β− γd0 − c ≥ −x′2β− γd3 − c.

The result follows since this event is independent of c.

E.2. Proof of Lemma 8

This proof parallels the proof of Lemma 6, the corresponding result for Model 1. Let Θ1 ≡ arg maxΘ Q and
define wt ≡ xt − xt−1, z ≡ y2 − y1, and v ≡ y3 − y0.

Step 1 Let θ1 ∈ Θ0 and θ2 ∈ Θ. We will show that Q(θ1) ≥ Q(θ2) and therefore, θ1 ∈ Θ1. We have

Q(θ1)−Q(θ2) = E
[
1{w3 = 0} · z ·

(
sgn(w′2β1 + γ1v)− sgn(w′2β2 + γ2v)

)]
=
∫

E[z | x, c, y0, y3, w3 = 0]
(
sgn(w′2β1 + γ1v)− sgn(w′2β2 + γ2v)

)
dFx,c,y0,y3|w3=0

= 2
∫

D(θ1,θ2)
sgn(w′2β1 + γ1v)E[z | x, c, y0, y3, w3 = 0] dFx,c,y0,y3|w3=0

where D(θ1, θ2) is defined as the set of all (x, c, v) where sgn(w′2β1 + γ1v) and sgn(w′2β2 + γ2v) differ. The
first equality follows by definition of Q, the second is an application of the law of iterated expectations, and the
third is due to the fact that on D(θ1, θ2), sgn(w′2β2 + γ2v) = − sgn(w′2β1 + γ1v). Note that on the integrand
above vanishes on the complement of D(θ1, θ2).

Now, since θ1 ∈ Θ0, from Theorem 9 we have that for all d0, d3,

sgn(w′2β1 + γ1v) = sgn (P(A | x, x2 = x3)− P(B | x, x2 = x3))

= sgn
(

P(y1 = 0, y2 = 1 | x, x2 = x3, y0 = d0, y3 = d3)

− P(y1 = 1, y2 = 0 | x, x2 = x3, y0 = d0, y3 = d3)
)

for all d0, d3 ∈ {0, 1}. The second line follows because the common factor which was removed, P(y0 =

d0, y3 = d3 | x, x2 = x3), is always positive. Furthermore, we can write

E[z | x, c, y0, y3, w3 = 0] = P(y1 = 0, y2 = 1 | x, c, y0, y3, w3 = 0)

− P(y1 = 1, y2 = 0 | x, c, y0, y3, w3 = 0).

So, the sign above times the conditional expectation of z simplifies to the absolute value of the conditional
expectation. Returning to the objective function,

Q(θ1)−Q(θ2) = 2
∫

D(θ1,θ2)
|E[z | x, c, y0, y3, w3 = 0]| dFx,c,y0,y3|w3=0 ≥ 0.

Step 2 Let θ1 ∈ Θ0 and suppose there exists a θ2 ∈ Θc
0 ∩Θ1. We will show that this implies Q(θ2) < Q(θ1),

which is a contradiction of the choice of θ2 ∈ Θ1, and therefore Θc
0 ∩Θ1 must be empty.

Note that we can express Q as

Q(θ) =
∫
{w′3 β+γv≥0}

[
P(y1 = 0, y2 = 1 | x, c, y0, y3, w3 = 0)

− P(y1 = 1, y2 = 0 | x, c, y0, y3, w3 = 0)
]

dFx,c,y0,y3|w3=0

+
∫
{w′3 β+γv<0}

[
P(y1 = 1, y2 = 0 | x, c, y0, y3, w3 = 0)

− P(y1 = 0, y2 = 1 | x, c, y0, y3, w3 = 0)
]

dFx,c,y0,y3|w3=0.
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Again we consider a difference Q(θ2)−Q(θ1). Using the linearity of integrals, we can partition the range of
each integral into disjoint sets and subtract the corresponding integrands on each set. When w′3β1 + γ1v and
w′3β2 + γ2v have the same sign, the difference is zero, so we only need to consider regions where the sign
differs:

D1 ≡ {(x, c, y0, y3) : w′3β2 + γ2v ≥ 0, w′3β1 + γ1v < 0},

D2 ≡ {(x, c, y0, y3) : w′3β2 + γ2v < 0, w′3β1 + γ1v ≥ 0}.

Hence,

Q(θ2)−Q(θ1) =
∫

D1

[
P(y1 = 0, y2 = 1 | x, c, y0, y3, w3 = 0)

− P(y1 = 1, y2 = 0 | x, c, y0, y3, w3 = 0)
]

dFx,c,y0,y3|w3=0

+
∫

D2

[
P(y1 = 1, y2 = 0 | x, c, y0, y3, w3 = 0)

− P(y1 = 0, y2 = 1 | x, c, y0, y3, w3 = 0)
]

dFx,c,y0,y3|w3=0.

Since θ1 ∈ Θ0 and θ2 /∈ Θ0, first term is strictly negative and the second term is weakly non-positive.

E.3. Proof of Theorem 10

By Lemma 8, Θ1 = Θ̃0. Therefore, we verify Assumptions C1–C3 in order to establish consistency of Θ̂n for
Θ̃0 using Lemma 2.

Assumption C1 is satisfied by definition of Model 2 and by inspection of f (·, ·, θ). Assumption C2 is
satisfied under B1 because Q is a step function which is piecewise continuous. To verify Assumption C3, since
| f (·, ·, θ)| ≤ 1 for all f ∈ F , F = 1 is a valid envelope and in light of Lemma 3, it suffices to show that F is a
VC subgraph class.

We follow the same strategy as in the proof of Theorem 6. Define wt ≡ xt − xt−1, z ≡ y2 − y1, and
v ≡ y3 − y0, and let f (w2, w3, z, v, θ) = 1{w3 = 0} · z2 ·

[
2 · 1{w′2β + γv ≥ 0} − 1

]
. First, note that f can be

rewritten as

f (w2, w3, z, v, θ) = 1{w3 ≥ 0} · 1{w3 ≤ 0} · (1{z2 > 0} − 1{z < 0})

·
(
1{w′2β + γv ≥ 0} − 1{w′2β + γv < 0}

)
.

Upon expanding this expression, it is clear that, as before, for any θ we can express subgraph f (·, ·, ·, ·, θ) as
series of intersections and unions (and complements thereof) of the form {g ≥ 0} and {g > 0} for specific
coefficient values α of some polynomial

g(w2, w3, z, v, t, α) = α1t + α2w2 + α3w3 + α4z + α5v.

Therefore, {subgraph( f ) : f ∈ F} is a VC class.
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