Problem 1. Castle Siege

Two lords and their armies are battling over a castle. Both armies only have enough food to fight for a year. If they fight longer, everyone will die. The lords can each give their armies only one order: the length of time t_i to siege. Let $l = \min\{t_1, t_2\}$ denote the length of the battle. The castle is worth 1 to each lord but fighting for a time t damages both the castle and the armies by t. The utility of each lord i is given by

$$u_i(t_i, t_j) = I_{\{t_i > t_j\}}(1-l) - l.$$

- a. Find a pure strategy Nash equilibrium.
- b. Find a symmetric mixed-strategy Nash equilibrium in which both lords randomize according F.

Problem 2. Midterm 2005

Consider the following dynamic game of perfect information. An individual (the buyer) wishes to purchase one unit of an indivisible good which he values at v > 0. There are two firms (the sellers) that can produce the good at zero cost. The buyer has two period-zero options: he may *quit*, ending the game with payoffs of zero to all players, or he may *visit seller 1* for a price quote. The buyer incurs a small transaction cost of $c \in (0, v/2)$ for each seller he visits. If visited, seller 1 makes the buyer a price offer of $p_1 \in \mathbb{R}_+$. The buyer then has three period-one options. He may *accept seller 1's offer*, yielding a payoff to the buyer of $v - c - p_1$, a payoff to seller 1 of p_1 , and a payoff to seller 2 of zero; he may *quit* yielding a payoff to the buyer of -c and payoffs to the sellers of zero; or he may *visit seller 2*. If visited, seller 2 observes p_1 and makes the buyer a price offer $p_2 \in \mathbb{R}_+$. The buyer then has three period-two options. He may *accept buyer i's offer*, yielding a payoff to the buyer of $v - 2c - p_i$, a payoff to seller *i* of p_i , and a payoff to seller $j \neq i$ of zero for i = 1, 2; or he may *quit* yielding a payoff of -2c to the buyer and zero to the sellers.

- a. Specify the buyer's SPNE strategy in period two, $s_2^*(p_1, p_2)$.
- b. Specify seller 2's SPNE strategy, $p_2^*(p_1)$.
- c. Specify the buyer's SPNE strategy in period one, $s_1^*(p_1)$
- d. Specify seller 1's SPNE strategy, p_1^* .
- e. Specify the buyer's SPNE strategy in period zero, s_0^* .
- f. What is the SPNE outcome of this game? Is the SPNE outcome Pareto efficient? If not, why not?

Problem 3. Midterm 2005

Consider the repeated game, $\Gamma^{1}(1)$, that consists of playing the following stage game *twice* without discounting ($\delta = 1$): Let $x \in \{(Q,Q), (Q,C), (C,Q), (C,C)\}$ denote a one-period history (i.e., a subgame).

	Player 2		
		Q	С
Player 1	Q	(-1, -1)	(-10, 0)
	С	(0, -10)	(-9, -9)

Table 1: Prisoners' Dilemma

- a. How many pure strategies does each player have in the repeated game $\Gamma^1(1)$? How many pure-strategy profiles are there in $\Gamma^1(1)$?
- b. Fully specify a subgame-perfect Nash equilibrium profile of $\Gamma^{1}(1)$. How many purestrategy SPNE profiles are there in $\Gamma^{1}(1)$?
- c. Fully specify a Nash equilibrium profile of $\Gamma^1(1)$ that is *not* subgame perfect. How many Nash equilibrium profiles are there in $\Gamma^1(1)$? (Hint: (C, C) must occur on the equilibrium path in both rounds of play in every NE.)