Annotated MATLAB Translation of the
Aguirregabiria and Mira (2007) Replication
Code

Jason R. Blevins and Minhae Kim

The Ohio State University, Department of Economics

November 12, 2019

Introduction

This is an annotated MATLAB translation of the Monte Carlo source code for the ex-
periments in Section 4 of Aguirregabiria and Mira (2007). The original source code!
was written in Gauss in by Victor Aguirregabiria. This is close to a direct transla-
tion of the original Gauss code to MATLAB, with annotations added, written by Ja-
son Blevins and Minhae Kim. The complete source and results can be found at https:
//jblevins.org/research/am_2007.

This program solves, simulates, and estimates a discrete time dynamic discrete choice
entry game among N = 5 heterogeneous firms. Many comments from the original source
code are preserved below.

This code is also the basis for the Monte Carlo experiments in Blevins and Kim (2019),

which applies the NPL estimator to continuous-time dynamic discrete games.

Model

Main features of the model:

* Dynamic game of firm entry and exit in a single market.
¢ Firms are indexed by i = 1,2,3,4,5 and ¢ is the time index.

* The binary decision variable is a;; defined as a; = 1 when firm i is active in the

market in period t and a;; = 0 otherwise.

*Source code dated May 2005, with comments and explanations added in August 2011, may be obtained at
http://individual.utoronto.ca/vaguirre/software/. See Aguirregabiria (2009) for detailed discussion of
the code.

http://individual.utoronto.ca/vaguirre/
https://jblevins.org
https://jblevins.org
https://minhaekim.org/
https://jblevins.org/research/am_2007
https://jblevins.org/research/am_2007
http://individual.utoronto.ca/vaguirre/software/

¢ The game is dynamic because firms must pay an entry cost 0gc to enter the market.

¢ The state variables of the game in period t are:

1. Five binary variables indicating which firms were active in the previous period
(@1,6-1, .., 854-1),
2. Market size (s¢),

3. Private choice-specific information shocks for each firm (g;;).

These states are payoff-relevant because they determine whether a firm has to pay
an entry cost to operate in the market. The full state vector for firm 7 is (x;, €;)
where x; = (s¢,a14-1,02¢-1,a34-1,044—1,05:—1) and €; = (&;+(0),&;(1)) and where
€;+(0) and (1) are known only to firm i.

¢ The profit function for an inactive firm i (a;; = 0) is:
I1;¢(0) = €;(0).
For an active firm i (a;; = 1), the profit function is:
ILit(1) = Opci — Opc (1 — aie—1) + Orsse — Orn In(N_it + 1) + €3 (1),

where N_;; denotes the number of rival firms (firms other than firm i) operating in

the market in period t and Ogc , Ogc, Ors and OrN are parameters.

¢ The private information shocks ¢;;(0) and €;(1) are independent and identically
distributed across time, markets, and players, are independent of each other, and

follow the standard type I extreme value distribution.

Structure of the Program

The code for the main control program proceeds in 8 steps and is presented first, followed
by the other subprograms called by the control program:

1 Main control program

1 Selection of the Monte Carlo experiment to implement

2 Values of parameters and other constants

3 Computing a Markov perfect equilibrium of the dynamic game

4 Simulating data from the equilibrium to obtain descriptive statistics

5 Checking for the consistency of the estimators (estimation with a very large sample)

6 Monte Carlo Experiment
7 Saving results of the Monte Carlo Experiment

8 Statistics from the Monte Carlo Experiments
2 Computation of Markov perfect equilibrium (mpeprob)
3 Procedure to simulate data from the computed equilibrium (simdygam)
4 Frequency Estimation of Choice Probabilities (freqprob)
5 Estimation of a Logit Model by Maximum Likelihood (milogit and loglogit)
6 Maximum Likelihood estimation of McFadden’s conditional logit (clogit)

7 NPL Algorithm (npldygam)

1. Main control program

1.1. Selection of the Monte Carlo Experiment to Implement

This program implements six different experiments. The variable selexper stores a value
from 1 to 6 that represents the index of the Monte Carlo experiment to implement. A run

of this program implements one experiment.

numexp = 6; % Total number of Monte Carlo experiments
selexper = 1; % Select a Monte Carlo experiment to run (1 to numexp)

This program creates several output files which are stored in the current working
directory. The names of these output files can be customized below.

% Output file

fileout = char(sprintf("am_2007_%d. log", selexper));
% Estimates for initial CCPs = frequency estimator
nfile_bNP = char(sprintf("bnp_exper_%d", selexper));

% Estimates for initial CCPs = logit estimation
nfile_bSP = char(sprintf("bsp_exper_%d", selexper));

% Estimates for initial CCPs = random U(0,1)

nfile_bR = char(sprintf("br_exper_%d", selexper));

% Estimates for initial CCPs = true CCPs

nfile_btrue = char(sprintf("btrue_exper_%d", selexper));

Next we open the log file for saving output.

diary(fileout);

1.2. Values of Parameters and Other Constants

First, we define several constants to specify the dimension of the problem. These parame-
ters are the same across the experiments including the number of local markets, M = 400,
the number of time periods, T = 1, the number of players, N = 5, and the number of
Monte Carlo simulations, 1000.

nobs = 400; % Number of markets (observations)

nrepli = 1000; % Number of Monte carlo replications

nplayer = 5; % Number of players

Next, we define the parameters used for each experiment. Each of the following
variables is a matrix where the rows correspond to the six individual experiments and,
for variables where firms are heterogeneous, the columns correspond to the number of
players.

Firms across all experiments share the same discount factor, 0.95, and firmsi =1,...,5

have the same fixed costs in all experiments

Orc1 = 1.9,
Orc2 = 1.8,
Orc3 = 1.7,
Orca = 1.6,
Orcs = 1.5.

Firm 5 has the lowest fixed cost of operation and is therefore the most efficient. The
coefficient on market size, frs, and the standard deviation of the choice-specific shocks are
held fixed across experiments.

theta_fc = zeros(numexp, nplayer);

theta_fc(:, 1) = -1.9; % Fixed cost for firm 1 in all experiments
theta_fc(:, 2) = -1.8; % Fixed cost for firm 2 in all experiments
theta_fc(:, 3) = -1.7; % Fixed cost for firm 3 in all experiments
theta_fc(:, 4) = -1.6; % Fixed cost for firm 4 in all experiments
theta_fc(:, 5) = -1.5; % Fixed cost for firm 5 in all experiments

theta_rs = 1.0 * ones(numexp, 1); % theta rs for each experiment
disfact = 0.95 * ones(numexp, 1); % discount factor for each experiment
sigmaeps = 1 * ones(numexp, 1); % std. dev. epsilon for each experiment

The market size process is the same across all six experiments. The variable has five
points of support s; € {1,2,3,4,5} represented by the column vector sval in the source.
The the state transition probability matrix for s; is

08 02 0.0 0.0 0.0
02 06 02 00 0.0
00 02 0.6 02 0.0
00 00 02 06 02
0.0 0.0 00 02 0.8

% Points of support and transition probability of state variable s[t], market size
sval = [1:1:5 1'; % Support of market size
numsval = size(sval, 1); % Number of possible market sizes
nstate = numsval * (2”nplayer); % Number of points in the state space
ptrans = [0.8, 0.2, 0.0, 0.0, 0.0 ;
0.2, 0.6, 0.2, 0.0, 0.0 ;
0.0, 0.2, 0.6, 0.2, 0.0 ;
0.0, 0.0, 0.2, 0.6, 0.2 ;
0.0, 0.0, 0.0, 0.2, 0.8 1;

The parameters that differ across the six experiments are the competitive effect, gy,
and the cost of entry, gc:

1. Experiment 1: 0gc = 1.0 and 6ry = 0.0,
2. Experiment 2: 0gc = 1.0 and Orn = 1.0,
3. Experiment 3: fgc = 1.0 and 6rn = 2.0,
4. Experiment 4: 6gc = 0.0 and 6rn = 1.0,
5. Experiment 5: gc = 2.0 and 6rn = 1.0,

6. Experiment 6: fpc = 4.0 and Orn = 1.0.

theta_rn = [0.0; 1.0; 2.0; 1.0; 1.0; 1.0]1; % Values of theta_rn for each experiment
theta_ec = [0

; 1.0; 1.0; 0.0; 2.0; 4.0 1; % Values of theta_ec for each experiment

Finally, given the value of selexper defined above we collect and keep only the
parameters for the selected experiment.

% Selecting the parameters for the experiment
theta_fc = theta_fc(selexper, :)';

theta_rs = theta_rs(selexper);

disfact = disfact(selexper);

sigmaeps = sigmaeps(selexper);

theta_ec = theta_ec(selexper);

theta_rn = theta_rn(selexper);

% Vector with true values of parameters
trueparam = [theta_fc; theta_rs; theta_rn; theta_ec; disfact; sigmaeps];

For reporting purposes, we define a vector of strings containing the names of the
individual parameters.

% Vector with names of parameters of profit function
namesb = ['FC_1'; 'FC_2'; 'FC_3'; 'FC_4'; 'FC.5'; ' RS'; ' RN'; ' EC' 1;

Define a structure to encapsulate the parameter values and settings:

% Structure for storing parameters and settings
theta_fc;
param.theta_rs = theta_rs;

param.theta_fc

param.theta_rn

theta_rn;
param.theta_ec = theta_ec;
param.disfact = disfact;
param.sigmaeps = sigmaeps;
param.sval = sval;
param.ptrans = ptrans;
param.verbose = 1;

Note that using this structure is a deviation from the original Gauss code, which passed
these values using global variables. The original code also did not have the verbose flag,
which was added to control the amount of output.

Finally, we set the seed of the internal pseudo-random number generator so that our
results will be reproducible.

% Seed for (pseudo) random number generation
rand('seed', 20150403);

1.3. Computing a Markov Perfect Equilibrium of the Dynamic Game

maxiter = 200; % Maximum number of Policy iterations
prob® = 0.5 * rand(nstate, nplayer);
[pequil, psteady, vstate, dconv] = mpeprob(prob@, maxiter, param);

1.4. Simulating Data from the Equilibrium

Here we call the simdygam function to simulate 50,000 observations from the MPE to obtain

descriptive statistics on the dynamics of market structure.

nobsfordes = 50000;

[aobs, aobs_1, sobs] = simdygam(nobsfordes, pequil, psteady, vstate);

After simulating a large sample, calculate and report several useful descriptive statistics.
First print a heading.

fprintf("\n");

fprintf

***\n");

fprintf(" DESCRIPTIVE STATISTICS FROM THE EQUILIBRIUM\n");

" BASED ON %d OBSERVATIONS\n", nobsfordes);
Il\nl);
" TABLE 2 OF THE PAPER AGUIRREGABIRIA AND MIRA (2007)\n");

fprintf
fprintf
fprintf
fprintf
fprintf("\n");

***\n");

(
(
(
(
(
(
(
(

Now calculate the summary statistics:

nf = sum(aobs')'; % Number of active firms in the market at t
nf_1 = sum(aobs_1')"'; % Number of active firms in the market at t-1

% Regression of (number of firms t) on (number of firms t-1)
[b, sigma] = mvregress([ones(nobsfordes, 1), nf_1], nf);
bareg_nf = b(2); % Estimate of autorregressive parameter

entries = sum((aobs.*x(1-aobs_1))"')"; % Number of new entrants at t
exits = sum(((1l-aobs).*aobs_1)"')"; % Number of firm exits at t
excess = mean(entries+exits-abs(entries-exits))'; % Excess turnover
buff = corr([entries, exits 1);

corr_ent_exit = buff(1,2); % Correlation entries and exits
freg_active = mean(aobs)'; % Frequencies of being active

Note that in GNU Octave one can use ols above instead of MATLAB’s mvregress or
fitlm.

% [b, sigma, rsq] = ols(nf, [ones(nobsfordes, 1), nf_1]);

Format and print the summary statistics:

fprintf('\n');

ANt (- m i m e \n');
fprintf (' (1) Average number of active firms = %12.4f\n', mean(nf));

ANt f(- o m e m e \n');
fprintf (' (2) Std. Dev. number of firms = %12.4f\n', std(nf));

L A G e e \n');
fprintf (' (3) Regression N[t] on N[t-1] = %12.4f\n', bareg_nf);

L T 1k i R \n');
fprintf(' (4) Average number of entrants = %12.4f\n', mean(entries)');
L1 1 i G e \n');
fprintf (' (5) Average number of exits = %12.4f\n', mean(exits)');
ANt (- m i m o \n');
fprintf (' (6) Excess turnover (in # of firms) = %12.4f\n', excess);

L A G e e \n');
fprintf (' (7) Correlation entries and exits = %12.4f\n', corr_ent_exit);

i o T i K L e R P \n');
fprintf(' (8) Probability of being active =\n');

disp(freg_active)
L G e T \n');
fprintf('\n');

Note: In the original Gauss source, the internal procedures appear here. For MATLAB
compatibility, these have been moved to the end of the file.

1.5. Checking for Consistency of the Estimators

To check for consistency of the estimators (or for possible programming errors) Aguirre-

gabiria and Mira (2007) estimated the model using each of the estimators using a large

8

sample of 400,000 markets. In all the experiments, and for each considered estimation
method, the estimates were equal to the true value up to the 4th decimal digit.

In this version of the program code, this has been omitted to save memory requirements
and CPU time.

The user interested in checking for consistency can do it by using this program code
with the following selections in Part 1:

% nobs = 400000 ; % Number of markets (observations)

o°

nrepli =1 ; % Number of Monte carlo replications

1.6. Monte Carlo Experiment

First, we print a heading that indicates which Monte Carlo experiment was selected.

fprintf('\n');

(

FPrint T (" sworskokooksokokokokokok ok okskokokok s ok skokokoko ok okskokokok ok okskokoskok ok kskokskoskoofok ok skskskokof ok sk skokokofok ok skokokokoRokok ok \ D)

fprintf (' MONTE CARLO EXPERIMENT #%d\n', selexper);

TPt (" ootttk ok ok skokokok ok ok skokskokof ok ok sk okskok o ok sk sk sk ok skskskokof ok sk sk skskofof ok sk sk sk ok skokskorok ko k \n)
(

fprintf('\n');

kparam = size(trueparam, 1) - 2; % Number of parameters to estimate
npliter = 20; % Maximum number of NPL iterations
param.verbose = 0;

% Matrix that stores NPL fixed point estimates (for each replication and NPL iteration)

% when we initialize the NPL algorithm with nonparametric frequency estimates of CCPs
bmatNP = zeros(kparam, nreplixnpliter);

% Matrix that stores NPL fixed point estimates (for each replication and NPL iteration)
% when we initialize the NPL algorithm with logit estimates of CCPs
bmatSP = zeros(kparam, nreplixnpliter);

% Matrix that stores NPL fixed point estimates (for each replication and NPL iteration)
% when we initialize the NPL algorithm with U(0,1) random draws for the CCPs
bmatR = zeros(kparam, nreplixnpliter);

% Matrix that stores NPL fixed point estimates (for each replication and NPL iteration)

% when we initialize the NPL algorithm with the true CCPs
btruemat = zeros(kparam, nrepli);

% We set the counter 'redraws' to zero.

©

s Note: When there are multicollinearity problems in a Monte Carlo

o°

sample we ignore that sample and take a new one. We want to check

o°

for the number of times we have to make these re-draws and this is

o°

why we use the counter 'redraws'
redraws = 0;

for draw = l:nrepli

fprintf(' Replication = %d\n', draw);
fprintf (' (a) Simulations of x''s and a''s\n');
flag = 1;

while (flag==1)
[aobs, aobs_1, sobs] = simdygam(nobs, pequil, psteady, vstate);

check = sum(sum([aobs, aobs_1]) == zeros(1l, 2*nplayer));
check = check + sum(sum([aobs, aobs_1]) == (nobs .* ones(l, 2+nplayer)));
if (check > 0)
flag = 1;
elseif (check == 0)
flag = 0;
end

redraws = redraws + flag; % Counts the number re-drawings
end

fprintf (' (b.1) Estimation of initial CCPs (Non-Parametric)\n');
probONP = fregprob(aobs, [sobs, aobs_1], vstate);

fprintf(' (b.2) NPL algorithm using frequency estimates as initial CCPs\n');
[best, varb] = npldygam(aobs, sobs, aobs_1, sval, ptrans, probONP, disfact, npliter);
bmatNP(:, (draw-1)*npliter+l:drawxnpliter) = best;

fprintf (' (c.1) Estimation of initial CCPs (Semi-Parametric: Logit)\n');
% Construct dependent (aobsSP) and explanatory variables (xobsSP)
aobsSP = reshape(aobs', nobsxnplayer, 1);
alphai = kron(ones(nobs,1), eye(nplayer));
xobsSP = kron(sobs, ones(nplayer,1));
nfirms_1 = kron(sum(aobs_1, 2), ones(nplayer,1));
aobs_1SP = reshape(aobs_1', nobsxnplayer, 1);
xobsSP = [alphai, xobsSP, aobs_1SP, nfirms_1 1;
% Logit estimation
[best, varest] = milogit(aobsSP, xobsSP);
% Construct probabilities
vstateSP = [ones(size(vstate,1), nplayer), vstate,
sum(vstate(:,2:nplayer+1l)')"' 1;
best = [diag(best(l:nplayer)) ;
ones(1,5) * best(nplayer+1);
eye(nplayer) = best(nplayer+2);
ones(1,5) * best(nplayer+3) 1;

10

probOSP = 1 ./ (l+exp(-vstateSPxbest));

fprintf (' (c.2) NPL algorithm using Logit estimates as initial CCPs\n');
[best, varb] = npldygam(aobs, sobs, aobs_1, sval, ptrans, probOSP, disfact, npliter);
bmatSP(:, (draw-1)*npliter+l:drawsnpliter) = best;

fprintf (' (d.1) Estimation of initial CCPs (Completely Random)\n');
probOR = rand(size(vstate,1), nplayer);

fprintf (' (d.2) NPL algorithm using U(0,1) random draws as initial CCPs\n');
[best, varb] = npldygam(aobs, sobs, aobs_1, sval, ptrans, probOR, disfact, npliter);
bmatR(:, (draw-1)+npliter+1l:draw+npliter) = best;

fprintf (' (e) NPL algorithm using true values as initial CCPs\n');

[best, varb] = npldygam(aobs, sobs, aobs_1, sval, ptrans, pequil, disfact, 1);
btruemat(:,draw) = best;
end

fprintf(' Number of Re-drawings due to Multicollinearity = %d\n', redraws);

1.7. Saving Results of the Monte Carlo Experiment

Save the results of the Monte Carlo experiments to the filenames stated in Part 1 above:

save(nfile_bNP, 'bmatNP');
save(nfile_bSP, 'bmatSP');
save(nfile_bR, 'bmatR');
save(nfile_btrue, 'btruemat');

1.8. Statistics from the Monte Carlo Experiments

This section reports the results in Tables 4 and 5 of Aguirregabiria and Mira (2007).?

bmatNP = reshape(bmatNP, [kparam+npliter, nrepli])';
bmatSP = reshape(bmatSP, [kparam+npliter, nrepli])';
bmatR = reshape(bmatR, [kparam+npliter, nrepli])';
btruemat = btruemat';

2We note that there is a mistake in the original Gauss code when reporting the “2step-Random” results
(starting on line 1364). The original code reports results from mean_bmatSP, median_bmatSP, and se_bmatSP
(Logit), instead of mean_bmatR, median_bmatR, and se_bmatR (Random).

11

% Empirical Means

mean_bmatNP = mean(bmatNP);

mean_bmatNP = reshape(mean_bmatNP, [kparam,npliter]);
mean_bmatSP = mean(bmatSP);

mean_bmatSP = reshape(mean_bmatSP, [kparam,npliter]);
mean_bmatR = mean(bmatR);

mean_bmatR = reshape(mean_bmatR, [kparam,npliter]);
mean_bmattrue = mean(btruemat);

% Empirical Medians

median_bmatNP = median(bmatNP);

median_bmatNP = reshape(median_bmatNP, [kparam,npliter]);
median_bmatSP = median(bmatSP);

median_bmatSP = reshape(median_bmatSP, [kparam,npliter]);
median_bmatR = median(bmatR);

median_bmatR = reshape(median_bmatR, [kparam,npliter]);
median_bmattrue = median(btruemat);

% Empirical Standard Errors

se_bmatNP = std(bmatNP);

se_bmatNP = reshape(se_bmatNP, [kparam,npliter]);
se_bmatSP = std(bmatSP);

se_bmatSP = reshape(se_bmatSP, [kparam,npliter]);
std(bmatR);

se_bmatR = reshape(se_bmatR, [kparam,npliter]);
se_bmattrue = std(btruemat);

se_bmatR

fprintf('\n');

FPrLNTT (" skokokokokokokookookookookookook ok ok ok ok sk sk sk sk sk sk sk sk sk sk sk sk ok skok sk ok sk ok okok ok fokkokkok ok ok skokokokokokokokokokkokkokkok ok \ N ') 5

fprintf (' MONTE CARLO EXPERIMENT # %d\n', selexper);

fprintf(' EMPIRICAL MEANS AND STANDARD ERRORS\n)

fprintf('\n");

fprintf (' TABLE 4 OF THE PAPER AGUIRREGABIRIA AND MIRA (2007)\n');

FPrLNTT (" sokokokokokokokoskookookookook ok ok ok sk ok sk ok sk sk sk sk sk sk sk sk sk ok skok sk ok sk ok ok ok kokfokkokkoksok ok skokokokokokokokokok ok kokkokk \ N ') 5
fprintf('\n');

oL K L R I e \n');

fprintf(' theta_fc_1 theta_rs theta_rn theta_ec\n');
T 1) o i R e e T \n');
fprintf('TRUE VALUES %12.4f %12.4f %12.4f %12.4f\n', trueparam([1,6,7,8]));
fprintf (- m i \n');
fprintf('\n');

fprintf (' MEAN 2step-True %12.4f %12.4f %12.4f %12.4f\n', mean_bmattrue([1,6,7,8]1));
fprintf('\n');

fprintf(' MEDIAN 2step-True %12.4f %12.4f %12.4f %12.4f\n', median_bmattrue([1,6,7,8]));
fprintf('\n');

fprintf (' S.E. 2step-True %12.4f %12.4f %12.4f %12.4f\n', se_bmattrue([1,6,7,8]));

12

fprintf('\n');

fprintf ('
fprintf

fprintf

‘\n");
' MEAN
‘\n');
' MEDIAN
‘\n");
! S.E.
‘\n");

fprintf
fprintf
fprintf
fprintf
fprintf
fprintf
fprintf('\n');
' MEAN
‘\n');
' MEDIAN
‘\n');
' S.E.
‘\n");

fprintf
fprintf
fprintf
fprintf
fprintf
fprintf
fprintf
fprintf('\n');

' MEAN
‘\n');

' MEDIAN
‘\n');

' S.E.
‘\n");

fprintf
fprintf
fprintf

fprintf
fprintf
fprintf
fprintf('\n');
! MEAN
‘\n');
' MEDIAN
‘\n');
' S.E.
‘\n');

fprintf
fprintf
fprintf
fprintf
fprintf
fprintf
fprintf
‘\n');

' MEAN
‘\n');

' MEDIAN
‘\n');

' S.E.
‘\n');

fprintf
fprintf
fprintf
fprintf
fprintf
fprintf
fprintf
fprintf
‘\n');

' MEAN
‘\n');

' MEDIAN

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
fprintf(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
fprintf(
fprintf(
fprintf(

(

fprintf

2step-Freq %12.4f

2step-Freq %12.4f
2step-Freq %12.4f
NPL-Freq %12.4f
NPL-Freq %12.4f
NPL-Freq .4f
2step-Logit%12.4f
2step-Logit%12.4f
2step-Logit%12.4f
NPL-Logit %12.4f
NPL-Logit %12.4f
NPL-Logit %12.4f
2step-Random

2step-Random

2step-Random

NPL-Random %12.4f

NPL-Random %12.4f

.4f

.4f

4f

.4f

.4f

4f

.4f

4f

4f

.4f

.4f

.4f

%12.4f

%12.4f

4f

.4f

.4f

.4f

4f

.4f

4f

4f

.4f

4f

.4f

.4f

.4f

L4f

.4f

%12.4f

%12.4f

13

.4f

LAf

LAf

LAf\n',

JAf\n',

4f\n"',

LAf\n',

Af\n',

4f\n"',

LAf\n',

Af\n',

JAf\n',

.4f\n",

LAf\n',

JAf\n',

%12.4f\n', mean_bmatR([1,6,7,8],

%12.4f\n', median_bmatR([1,6,7,8],

%12.4f\n', se_bmatR([1,6,7,8],

%12.4f\n",

%12.4f\n",

mean_bmatNP([1,6,7,81, 1));

median_bmatNP([1,6,7,8],

1));

se_bmatNP([1,6,7,81],

1));

mean_bmatNP([1,6,7,8], end));

median_bmatNP([1,6,7,8], end));

se_bmatNP([1,6,7,8], end));

mean_bmatSP([1,6,7,8],

1));

median_bmatSP([1,6,7,8],

1));

se_bmatSP([1,6,7,81,

1));

mean_bmatSP([1,6,7,8], end));

median_bmatSP([1,6,7,8], end));

se_bmatSP([1,6,7,8], end));

1));

1));

1));

mean_bmatR([1,6,7,8], end));

median_bmatR([1,6,7,8], end));

fprintf('\n');

fprintf (' S.E. NPL-Random %12.4f %12.4f %12.4f %12.4f\n', se_bmatR([1,6,7,8], end));
fprintf(

fprintf(

‘\n');
B e e \n');

% TABLE 5: SQUARE-ROOT MEAN SQUARE ERRORS OF DIFFERENT ESTIMATORS
RATIOS OVER THE SQUARE-ROOT MSE OF THE 2-STEP PML USING THE TRUE CCPs

o°

% Empirical Square-root MSE

trueparam = repmat(trueparam(l:kparam),1l,npliter);

srmse_true = sqrt((mean_bmattrue'-trueparam(:,1)).”2 + se_bmattrue'.”2);
srmse_NP = sqrt((mean_bmatNP-trueparam).”2 + se_bmatNP."2);

srmse_SP = sqrt((mean_bmatSP-trueparam).”2 + se_bmatSP."2);

srmse_R = sqrt((mean_bmatR-trueparam).”2 + se_bmatR."2);

% Ratios

srmse_true = repmat(srmse_true, 1, npliter);

srmse_NP = srmse_NP ./ srmse_true;
srmse_SP = srmse_SP ./ srmse_true;
srmse_R = srmse_R ./ srmse_true;

fprintf('\n');

fpr‘intf(! skesk sk ok ok ok sk ok KR oK ok sk K K K ok sk sk K K ok sk K K ok sk sk K K ok sk ok K ok sk sk K K ok sk sk Kk sk sk sk kK sk sk sk sk kok sk sk sk ok sk sk sk skokkokskskkok \ N ')
fprintf (' MONTE CARLO EXPERIMENT #%d\n', selexper);

fprintf (' SQUARE-ROOT MEAN SQUARE ERRORS\n);

fprintf (' RATIOS OVER THE SQUARE-ROOT MSE OF THE 2-STEP PML USING THE TRUE CCPs\n');
fprintf('\n');

fprintf (' TABLE 5 OF THE PAPER AGUIRREGABIRIA AND MIRA (2007)\n');

FPrLNTT (" ootk okook ok ok ok ok ok sk ok sk sk sk sk sk sk sk ok sk ok skok sk ok ok ok sk ok ok kokkokkok ok ok ok ko ok ok okok kb okokoksksksk sk sk sk sk sk sk kkkk ok \ N ') 5
fprintf('\n");

B oL X \n');
fprintf (' theta_fc_1 theta_rs theta_rn theta_ec\n');
LT ko R e T \n');
fprintf('SQ-MSE 2-step-TRUE %12.4f %12.4f %12.4f %12.4f\n', srmse_true([1,6,7,8], 1));
L1 1L i e e R \n');
fprintf('\n');

fprintf(' RATIO: 2step-Freq %12.4f %12.4f %12.4f %12.4f\n', srmse_NP([1,6,7,8], 1));
fprintf('\n');

fprintf(-cmm e m - \n');
fprintf('\n');

fprintf (' RATIO: NPL-Freq %12.4f %12.4f %12.4f %12.4f\n', srmse_NP([1,6,7,8], end));
fprintf('\n');

L T 1L i e \n');
fprintf('\n');

fprintf ('RATIO: 2step-Logit %12.4f %12.4f %12.4f %12.4f\n', srmse_SP([1,6,7,8], 1));
fprintf('\n');

14

ANt (- m i m - \n');
fprintf('\n');

RATIO: NPL-Logit %12.4f %12.4f %12.4f %12.4f\n', srmse_SP([1,6,7,8], end));
n')

(
(.
fprintf('
fprintf('\ ;
LT 1L o e \n');
fprintf('\n');
fprintf('RATIO: 2step-Rando %12.4f %12.4f %12.4f %12.4f\n', srmse_R([1,6,7,8]1, 1));

(.
L1 1 i G \n');
fprintf('\n');
fprintf(' RATIO: NPL-Random %12.4f %12.4f %12.4f %12.4f\n', srmse_R([1,6,7,8], end));
fprintf('\n');
L G e \n');

fprintf('\n");

Finally, we close the log file.

diary off;

Now that the main control script is complete, we now define several additional func-

tions that carry out various steps above.

2. Computation of Markov Perfect Equilibrium (mpeprob)

The mpeprob function computes players” equilibrium conditional choice probabilities
(CCPs) using the policy iteration algorithm.
Usage:

[prob, psteady, mstate, dconv] = mpeprob(inip, maxiter, param)

Inputs:

* inip - Matrix of initial choice probabilities with numx rows for each state and nplayer

columns for each player.
* maxiter - Maximum number of policy iterations.

* param - Structure containing parameter values and settings.

Outputs:

15

* prob - Matrix of MPE entry probabilities with numx rows and nplayer columns. Each
row corresponds to a state and each column corresponds to a player.

¢ psteady - Column vector with numx rows containing the steady-state distribution of

(st,a1-1).

* mstate - Matrix with numx rows and nplayer+1 columns containing the values of
state variables (st a;-1). The states in the rows are ordered as in the matrix prob
above.

¢ dconv - Indicator for convergence: dconv = 1 indicates that convergence was achieved
and dconv = 0 indicates no convergence.

As an example, when sval = [1, 2] and there are N = 3 players, the 16 rows of
the prob matrix correspond to rows of the mstate vector as follows:

Row s; a1 azp1 a3

1 1 o (0] (0]
2 1 (0} (0} 1
3 1 0 1 0
4 1 0 1 1
5 1 1 0 o}
6 1 1 0 1
7 1 1 1 0
8 1 1 1 1
9 2 0 0 0
10 2 o O 1
11 2 o 1 o
12 2 O 1 1
13 2 1 0 0
14 2 1 0 1
15 2 1 1 0
16 2 1 1 1
function [probl, psteadyl, mstate, dconv] = mpeprob(inip, maxiter, param)

The function begins by calculating and storing the dimensions of the problem based
on the input values.

16

nums = size(param.sval, 1);

nplayer = size(inip, 2);

numa = 2”nplayer;

numx = nums * numa;

Then it prints an informative header.

if

end

(param.verbose)
fprintf('\n\n');

fprintf(stk K ok sk oK KK oK ok oK KK K ok sk sk ok ok sk sk K ok sk sk K ok ok sk K K K ok sk kK K ok sk sk K ok sk sk sk Ok sk sk sk sk sk sk sk sk ok sk sk sk skokskoskskskkokkk \ N ')
fprintf (' COMPUTING A MPE OF THE DYNAMIC GAME\n');
FPrintF (" sororokorokokokokokokokokok ok sk okokokok o ok skokoskok o ok sk skokoskok ok ok sk skokoko ok ok skokskoof ok skskskskofof ok skskokokofofoskskokokorokok ok \ D)
fprintf('\n');
ANt (- - mm - \n');
fprintf (' Values of the structural parameters\n');
fprintf('\n');
for i = 1l:nplayer

fprintf(' Fixed cost firm %d = %12.4f\n', 1, param.theta_fc(i));
end
fprintf (' Parameter of market size (theta_rs) = %12.4f\n', param.theta_rs);
fprintf('Parameter of competition effect (theta_rn) = %12.4f\n', param.theta_rn);
fprintf (' Entry cost (theta_ec) = %12.4f\n', param.theta_ec);
fprintf (' Discount factor = %12.4f\n', param.disfact);
fprintf (' Std. Dev. epsilons = %12.4f\n', param.sigmaeps);
fprintf('\n');
L G e \n');
fprintf('\n');
fprintf (' BEST RESPONSE MAPPING ITERATIONS\n');
fprintf('\n');

2.1. Construct the mstate Matrix with Values of s¢, a;_1

First, we build a matrix named aval where the columns are all possible a;_; vectors. Then

we augment the aval matrix with a vector of possible s; values to construct the mstate

matrix.

aval = zeros(numa, nplayer);

for

i = l:nplayer

aval(:,i) = kron(kron(ones(2”~(i-1),1), [0; 1 1), ones(2™(nplayer - i), 1));

end

17

mstate = zeros(numx, nplayer + 1);
mstate(:, 1) = kron(param.sval, ones(numa, 1))
mstate(:, 2:nplayer+1l) = kron(ones(nums, 1), aval);

The resulting mstate matrix has the form described above. For example, with two s;
states and two players:

mstate =
1 0 0
1 0 1
1 1 0
1 1 1
2 0 0
2 0 1
2 1 0
2 1 1

2.2. Initializing the Vector of Probabilities

Next, we initialize the prob@ vector, for storing the equilibrium CCPs, to the initial inip
matrix provided. We also define two tolerances for the two termination criteria: critconv
is the tolerance for the change in the sup norm of the CCP matrix and criter is the
maximum number of iterations.

prob® = inip;

critconv = (1le-3)*(1/numx);
criter = 1000;

dconv = 1;

2.3. Iterative algorithm

The iterative algorithm keeps track of the number of iterations, iter, and terminates when
either the change in the sup norm of the CCP matrix is smaller than critconv or the

maximum number of iterations exceeds criter.

iter = 1;
while ((criter > critconv) && (iter <= maxiter));
if (param.verbose)
fprintf (' Best response mapping iteration = %d\n', iter);

18

fprintf (' Convergence criterion = %g\n', criter);
fprintf('\n');

end

probl = prob0;

2.3.1. Matrix of transition probs Pr(a;|s¢, a;—1)

ptrana = (probl(:,1).”(aval(:,1)"')).*((1l-probl(:,1)).”(1l-aval(:,1)"));
i=2;
while i <= nplayer;

ptrana = ptrana.*x(probl(:,i).”(aval(:,1)"')).*((l-probl(:,1i)).”(1-aval(:,1i)"'));

i=1+1;

end

Then for each player i we carry out the following steps:

for i = l:nplayer

2.3.2. Matrices Pr(a;|ss, a;_1,a;)

mi = aval(:,1)"';

ppi = probl(:,1i);

iptran0 = (1-mi)./((ppi.”mi).*((1-ppi).~(1-mi)));
iptran@ = ptrana .* iptran0;

iptranl = mi./((ppi.”mi).*((1-ppi).~(1-mi)));
iptranl = ptrana .* iptranl;

clear mi;

2.3.3. Computing h; = E[In(N_;; +1)]

hi = aval;
hi(:,1i) = ones(numa, 1);
hi = iptranl * log(sum(hi, 2));

2.3.4. Matrices with Expected Profits of Firm i

profitl = param.theta_fc(i)
+ param.theta_rs * mstate(:,1) ...

19

- param.theta_ecx(l-mstate(:,i+1)) ... % Use i+l because first component is market state
- param.theta_rn * hi; % Profit if firm is active
profit® = zeros(numx,1); % Profit if firm is not active

2.3.5. Transition Probabilities for Firm i

Pr(xt1, ae|xe, ar—1,a;p = 0), Pr(xesy, ar|xe, ap—1,a;p = 1)

iptran@ = (kron(param.ptrans, ones(numa,numa))) .* (kron(ones(1l,nums), iptran0));

)
iptranl (kron(param.ptrans, ones(numa,numa))) .* (kron(ones(l,nums), iptranl));

2.3.6. Computing Value Function for Firm i

vO = zeros(numx, 1);
cbell = 1000;
while (cbell > critconv);
vl = [profit@ + param.disfact * iptran@ x* vO0,
profitl + param.disfact * iptranl * v0];
vl = vl ./ param.sigmaeps;
maxvl = max(vl, [], 2);
vl = vl - kron([1, 1], maxvl);
vl = param.sigmaeps * (maxvl + log(exp(vl(:,1)) + exp(vl(:,2))));
cbell = max(abs(vl - v0@), [1, 1);
vl = vl;

end

2.3.7. Updating Probabilities for Firm i

vl [profit® + param.disfact * iptran@ x* vO0,
profitl + param.disfact * iptranl * v0@];

vl = vl ./ param.sigmaeps;

maxvl = max(vl, []1, 2);

vl = vl - repmat(maxvl, 1, 2);

probl(:,i) = exp(vl(:,2))./(exp(vl(:,1))+exp(vl(:,2)));

This is the last player-i-specific step, so we terminate the loop over i.

end

20

We then evaluate the two convergence criteria—criter, the sup norm of the difference
in CCPs, and iter, the iteration counter. In preparing for the next loop, we copy the
updated CCPs in probl over the old CCP matrix prob@.

criter = max(max(abs(probl - prob0)));
prob® = probl;
iter = iter + 1;

Finally, we terminate the while loop started in step 2.3.

end
clear iptran@ iptranl vO v1;

2.4. Reporting

Before returning, we print some informative output.

if (criter > critconv)
dconv = 0;
psteadyl = 0;
if (param.verbose)

LT L A e T T \n');
fprintf(' CONVERGENCE NOT ACHIEVED AFTER %d BEST RESPONSE ITERATIONS\n', iter);
LT L R e R T T T \n');
end
else

ptrana = ones(numx, numa);
for i = 1l:nplayer;
mi = aval(:,1i)"';
ppi = probl(:,i);
ppil
ppi® = 1 - ppil;

repmat(ppi, 1, numa);

mil = repmat(mi, numx, 1);
mi® = 1 - mil;
ptrana = ptrana .* (ppil .” mil) .x (ppi® .” mi0);
end
ptrana = (kron(param.ptrans, ones(numa, numa))) .* (kron(ones(1l,nums), ptrana));
criter = 1000;
psteady® = (1/numx) * ones(numx, 1);
while (criter > critconv)
psteadyl = ptrana' * psteady0;

21

criter = max(abs(psteadyl - psteady0), [], 1);
psteady® = psteadyl;
end
if (param.verbose)
L L A e T \n');
fprintf (' CONVERGENCE ACHIEVED AFTER %d BEST RESPONSE ITERATIONS\n', iter);
LT L A e e \n');
fprintf(' EQUILIBRIUM PROBABILITIES\n');
probl
LT L A I \n');
fprintf (' STEADY STATE DISTRIBUTION\Nn');
psteadyl
oL 1 R e \n');
end
end

This completes the mpeprob function.

end

3. Procedure to Simulate Data from the Computed Equilibrium (simdygam)

The simdygam function simulates data of state and decision variables from the steady-
state distribution of a Markov Perfect Equilibrium in a dynamic game of firms” market
entry/exit with incomplete information.

Usage:

[aobs, aobs_1, sobs, xobs] = simdygam(nobs, pchoice, psteady, mstate)

Inputs:

e nobs - Number of simulations (markets)

* pchoice - Matrix of MPE probabilities of entry with nstate rows, for each state, and

nplayer columns, for each player.

¢ psteady - Column vector with nstate rows containing the steady-state distribution
Of (St, at—l)-

22

* mstate - Matrix with nstate rows and nplayer + 1 columns containing the values
of state variables (s¢,a;—1). The states in the rows are ordered as in the mpeprob
function defined above.

Outputs:

* aobs - Matrix with nobs rows and nplayer columns containing players’ observed
choices.

* aobs_1 - Matrix with nobs rows and nplayer columns containing players” initial
states.

* sobs - Column vector with nobs rows containing the simulated values of the market
size state s;.

¢ xobs - Column vector with nobs rows containing the indices of the resulting full
state vectors. These are used as indices for the rows of the mstate matrix.

Examples of aobs, aobs_1, xobs, and sobs with nobs = 6:

aobs =

m ©® ©@ ©®© KB K
= I = ==
_ H® O B
e N o I o I
e =< I ==

aobs_1 =

_ O © B = B
= = ISy
_ © Rk B P
N =l = IS o)
[= T < T R SR

xobs =
126

96
32

23

76
160

sobs =

U W R = W A

function [aobs, aobs_1, sobs, xobs] = simdygam(nobs, pchoice, psteady, mstate)

The function begins by calculating and storing the dimensions of the problem based

on the input values.

nplay = size(pchoice, 2);
nums = size(pchoice, 1);
numa = 2”nplay;

numx = nums / numa;

3.1. Generating Draws from the Ergodic Distribution of (s¢,as_1)

First, we construct the CDF in pbuffl by taking the cumulative sum of the steady state
probabilities (psteady) across states. Then, we shift the CDF right by one state. We can
then draw from the CDF by checking to see if a uniform draw falls in the interval defined
by the CDF and shifted CDEF.

pbuffl = cumsum(psteady);

pbuff@ = cumsum([O; psteady(l:nums-1)]);
uobs = rand(nobs, 1);

pbuffl = kron(pbuffl, ones(1l, nobs));

pbuff® = kron(pbuff@, ones(l, nobs));

uobs = kron(uobs, ones(1l, nums));

uobs = (uobs>=(pbuff@')) .* (uobs<=(pbuffl'));

Given the indicators for which intervals the uniform draws fall in, we draw indices

xobs for the mstate matrix, which lists all the possible states of the model. Then we take

24

the first components of the states, the market sizes, and store them in sobs. Similarly, the
last nplay observations are the firm activity indicators, stored as aobs_1.

xobs = uobs * [l:nums]';

sobs = mstate(xobs, 1);

aobs_1 = mstate(xobs, 2:nplay+l);
clear pbuff@ pbuffl;

3.2. Generating Draws of a; given (sy,as_1)

Now that we have simulated the state configurations, we calculate the choice probabilities

and simulate new actions for each firm, returned in aobs.

pchoice = pchoice(xobs,:);
uobs = rand(nobs, nplay);
aobs = (uobs <= pchoice);

This completes the simdygam function.

end

4. Frequency Estimation of Choice Probabilities (freqprob)

This procedure obtains a frequency estimates of Pr(Y | X) where Y is a vector of binary
variables and X is a vector of discrete variables.

Usage:

fregp = freqprob(yobs, xobs, xval)

Inputs:

* yobs - (nobs x q) vector with sample observations of Y = [Y7,Y>,...,Y,].
* xobs - (nobs x k) matrix with sample observations of X.
e xval - (numx x k) matrix with the values of X for which we want to estimate

Pr(Y | X).

25

Outputs:

e fregp - (numx X q) vector with frequency estimates of Pr(Y | X) for each value in
xval: (Pr(Y1 =1|X),Pr(Y,=1|X),...,Pr(Y, =1 X)).

function probl = fregprob(yobs, xobs, xval)
numx = size(xval, 1);

numq size(yobs, 2);
numobs = size(xobs, 1);
probl = zeros(numx, numq);
for t = 1l:numx

xvalt = kron(ones(numobs,1l), xval(t,:));

selx = prod(xobs == xvalt, 2);
denom = sum(selx);
if (denom == 0)

probl(t,:) = zeros(l, numq);
else

numer = sum(kron(selx, ones(1l,numq)) .* yobs);
probl(t,:) = (numer') ./ denom;
end
end
end

5. Estimation of a Logit Model by Maximum Likelihood

These two procedures estimate a logit model by maximum likelihood using Newton’s

method for optimization.

5.1. Loglikelihood function for a logit model

This function calculates a loglikelihood function given a matrix of binary dependant
variable, Y, a matrix of discrete independent variables, X, and values of parameters, 6.

Usage:

1lik = loglogit(ydum, x, b)

Inputs:
¢ ydum - (nobs x q) vector of observations of the dependent variable.

* x - (nobs x k) matrix of explanatory variables.

26

Outputs:

¢ 1lik - Scalar with value of loglikelihood function.

function 1lik = loglogit(ydum, x, b)
myzero = le-12;
expxb = exp(-x*b);
Fxb = 1./(1 + expxb);
Fxb = Fxb + (myzero - Fxb).*x(Fxb < myzero) ...

+ (1-myzero - Fxb).x(Fxb > 1 - myzero);
1lik = ydum'*ln(Fxb) + (1 - ydum)'xln(1l - Fxb);
end

5.2. Estimation of a logit model by maximum likelihood (milogit)

This function obtains the maximum likelihood estimates of a binary logit model using
Newton’s method as the optimization algorithm.
Usage:

[best, varest] = milogit(ydum, x)

Inputs:

* yobs - (nobs x q) vector with sample observations of Y = [Y7,Y>,...,Y,].
* xobs - (nobs x k) matrix with sample observations of X.

e xval - (numx x k) matrix with the values of X for which we want to estimate
Pr(Y | X).

Outputs:

e best - (k x 1) vector with maximum likelihood estimates

e var - (k X k) vector with estimated variances-covariances of estimates

function [b0, Avarb] = milogit(ydum, x)

27

First, we set the constants for tolerance level and convergence criteria. Then, we
define the starting values for parameters to be a (k x 1) vector of zeros. 1sopts.SYM and
Lsopts.POSDEF is used to exploit the fact that the Hessian is a symmetric positive definite
matrix, which can increase the speed.

nobs = size(ydum, 1);

nparam = size(x, 2);

epsl = le-4;

eps2 = le-2;

b0 = zeros(nparam, 1);

iter = 1;

criterl = 1000;

criter2 = 1000;

lsopts.SYM = true; lsopts.POSDEF = true;

We obtain the maximum likelihood estimates using Newton’s method. We evaluate the
two convergence criteria —criterl for the norm of differences in estimates and criter2
for the norm of gradient.

while ((criterl > epsl) || (criter2 > eps2))
% fprintf("\n");
% fprintf("Iteration = %d\n", iter);
% fprintf("Log-Likelihood function = %12.4f\n", loglogit(ydum,x,b@));
% fprintf("Norm of b(k)-b(k-1) = %12.4f\n", criterl);
% fprintf("Norm of Gradient = %12.4f\n", criter2);

% fprintf("\n");
expxb® = exp(-x*b0);
Fxb0 = 1./(1l+expxb0);
dlogLb® = x'*(ydum - Fxb0);
d2logLb0® = (repmat(Fxb@ .x (1-Fxb0), 1, nparam) .x X)'x*X;
bl = b0 + linsolve(d2logLb®, dlogLb@, lsopts);
criterl = sqrt((bl-b@)'+(bl-b0o));
criter2 = sqrt(dlogLbO'*dlogLb®);
b0 = bl;
iter = iter + 1;
end

expxb0@ = exp(-x*b0);
Fxb0@ = 1./(1l+expxb0);
Avarb = -d2loglLb0;
Avarb = inv(-Avarb);

28

It is possible to obtain the value of the log-likelihood function at the maximum
likelihood estimates using loglogit.

% sdb = sqrt(diag(Avarb));
tstat = b0O./sdb;
llike = loglogit(ydum,x,b0O);

o o°

o°

numyl = sum(ydum);

o°

numy@ = nobs - numyl;

o°

logLO® = numylxlog(numyl) + numyOxlog(numy®@) - nobsxlog(nobs);
LRI = 1 - llike/loglL0O;
pseudoR2 =1 - ((ydum - Fxb0O)'x(ydum - FxbO))/numyl;

o°

o°

end

6. Maximum Likelihood estimation of McFadden’s Conditional Logit (clogit)

This procedure maximizes the pseudo likelihood function using Newton’s method with
analytical gradient and hessian.
Usage:

[best, varest] = clogit(ydum, x, restx)

Inputs:

¢ ydum - (nobs x 1) vector of observations of dependent variable which is a categorical

variable with values: {1,2, ..., nalt}

* x - (nobs x (k * nalt)) matrix of explanatory variables associated with unrestricted

parameters. First k columns correspond to alternative 1, and so on.

* restx - (nobs x nalt) vector of the sum of the explanatory variables whose parame-

ters are restricted to be equal to 1.
Outputs:

e best - (k x 1) vector with ML estimates

e varest - (k x k) matrix with estimate of covariance matrix.

function [b0, Avarb] = clogit(ydum, x, restx)

29

We first set the convergence criteria for the norm of differences in parameter estiamtes
and define the size of observations and parameters.

cconvb = le-6;

myzero = le-16;

nobs = size(ydum, 1);
nalt = max(ydum);

npar = size(x, 2) / nalt;
lsopts.SYM = true;
lsopts.POSDEF = true;

This part calculates the sum of product of Y and X needed for analytical gradient.

xXysum = 0;

for j = 1l:palt
xysum = xysum + sum(repmat(ydum==j, 1, npar) .* x(:,nparx(j-1)+l:nparx*j));
end

We obtain the maximum likelihood estimates using Newton’s method providing the

analytical gradient and Hessian.

iter = 1;
criter = 1000;
1like = -nobs;

b0 = zeros(npar, 1);
while (criter > cconvb)
fprintf('\n');

o°

% fprintf('Iteration = %d\n', iter);
% fprintf('Log-Likelihood function = %12.4f\n', llike);
% fprintf('Norm of b(k)-b(k-1) = %12.4f\n', criter);

o°

fprintf('\n');

o°

Computing probabilities
phat = zeros(nobs, nalt);
for j = l:nalt
phat(:,j) = x(:,npar*(j-1)+1l:npar*j)*b0 + restx(:,j);
end
phatmax = repmat(max(phat, [], 2), 1, nalt);
phat = phat - phatmax;
phat

exp(phat) ./ repmat(sum(exp(phat), 2), 1, nalt);

% Computing xmean

30

e

A

%

o® ° of

o°

end

sumpx = zeros(nobs, npar);
XXm =
1like = 0;
for j l:nalt

xbuff = x(:,npar*(j-1)+1l:nparxj);

N o

sumpx = sumpx + repmat(phat(:,j), 1, npar) .x xbuff;
xxm = xxm + (repmat(phat(:,j), 1, npar).*xxbuff)'sxbuff;
1like = llike ...
+ sum((ydum==j)
.+ log((phat(:,j) > myzero).xphat(:,j)
+ (phat(:,j) <= myzero).x*myzero));
end

% Computing gradient
dlllike = xysum - sum(sumpx);

% Computing hessian
d21like = - (xxm - sumpx'*sumpx);

% Gauss iteration
bl = b0 + linsolve(-d2llike, dlllike', lsopts);
criter = sqrt((bl-b0)'*(bl-b0o));

b0 = bl;

iter = iter + 1;

nd

varb = inv(-d21like);

sdb = sqrt(diag(Avarb));

tstat = b0O./sdb;

numyj = sum(kron(ones(1,nalt), ydum)==kron(ones(nobs,1),(1:nalt)));
logL0O sum(numyj.xlog(numyj./nobs));

lrindex = 1 - llike/loglL0;

7. NPL Algorithm

The npldygam implements the procedure that estimates the structural parameters of
dynamic game of firms’ entry/exit using the Nested Pseudo-Likelihood (NPL) algorithm.
Usage:

[be

st, varb] = npldygam(aobs, zobs, aobs_1, zval, ptranz, pchoice, bdisc, kiter)

Inputs:

31

® aobs - (nobs x nplayer) matrix with observations of firms” activity decisions (1 =

active; o = inactive).
® zobs - (nobs x 1) vector with observations of market exogenous characteristics.

e aobs_1 - (nobs x nplayer) matrix with observations of firms’ initial states (1 =

incumbent; o = potential entrant).
e zval - (numz x 1) vector with values of market characteristics.

e ptranz - (numz X numz) matrix with observations of firms” initial states (1 = incum-

bent; o = potential entrant).

* pchoice - ((numz+2"nplayer) x nplayer) matrix of players” choice probabilities used
to initialize the procedure.

e ptranz - (numz X numz) matrix with observations of firms’ initial states (1 = incum-

bent; o = potential entrant).

e bdisc - Discount factor.

kiter - Number of NPL iterations
Outputs:

* best - (k x kiter) matrix with estimates of parameters (6rc 1, 0rc2, - - -, Orc,5, Ors, OrN, OrC)
for each iteration. The first column is the 1st-stage NPL, second column is the 2nd-
stage NPL, and so on.

e varest - (k X k) matrix with estimated covariance matrices of the NPL estimators.

function [best, varb] = npldygam(aobs, zobs, aobs_1, zval, ptranz, pchoice, bdisc, kiter)

We start by setting constants including the number of observations (nobs), players
(nplayer), possible firms’ initial states (numa), possible market sizes (numz), states (numx),
parameters to estimates (kparam). best and varb saves estimates and variances for each
stage.

eulerc = 0.5772;

myzero = le-16;

nobs = size(aobs, 1);
nplayer = size(aobs, 2);

32

numa = 2”nplayer;

numz = size(zval, 1);

numx = numzxnuma;

kparam = nplayer + 3;

best = zeros(kparam, kiter);

varb = zeros(kparam, kparamxkiter);

7.1. Construct the mstate Matrix with Values of s, as_1.

We construct the mstate matrix with state vectors as in mpeprob function. As described
above, mstate is a (numx x nplayer + 1) matrix where numx is the total number of states

in the model and there are columns for the market size state and each player’s state.

aval = zeros(numa, nplayer);
for i = l:nplayer
aval(:,i) = kron(ones(2”(i-1),1), kron([0; 1], ones(2”(nplayer-i),1)));
end
mstate = zeros(numx, nplayer+1l);
mstate(:,1) = kron(zval, ones(numa, 1));
mstate(:,2:nplayer+1l) = kron(ones(numz, 1), aval);

7.2. Assign each state a state index (indobs)

We label each observation with the corresponding state index by constructing indobs, a
vector of length nobs. Each entry in the vector is an integer from 1 to numx, and corresponds
to a row of the mstate matrix. For example, when nobs = 10 in the standard 5 player

model, where numx is 160:

indobs =

158
128
126
160

92
160
160
128

86

33

indzobs = (repmat(zobs, 1, numz)==repmat(zval', nobs, 1))*[l:numz 1';

twop = kron(ones(nobs, 1), 2.~(nplayer-[1l:nplayer]));

indobs = sum(aobs_1.xtwop, 2);

indobs = (indzobs-1).x*(2”nplayer) + indobs + 1;

7.3. NPL algorithm

Our goal is to express the pseudo likelihood function in terms of parameters, 6. We start
the NPL algorithm from defining matrices. aobs is a ((nobs x nplayer) x 1) matrix with
entries equal to 2 for active firms and 1 for inactive firms. This is to match the requirements
of clogit below. u0 and ul are ((numx x nplayer) X k) matrices that store explanatory

variables.

aobs = 1 + reshape(aobs, [nobs * nplayer, 11]);
ud = zeros(numx * nplayer, kparam);

ul = zeros(numx * nplayer, kparam);

e0 = zeros(numx * nplayer, 1);

el = zeros(numx * nplayer, 1);

We iterate the algorithm kiter times with a counter iter. The iteration output was

been commented out for brevity.

for

o o° o°

o°

iter = l:kiter
fprintf('\n');

L L \n');
fprintf(' POLICY ITERATION ESTIMATOR: STAGE = %d\n', iter);
e L \n');

fprintf('\n');

7.3.1. Matrix of transition probabilities Pr(a;|s;, a;—1)

ptrana = ones(numx, numa);

for i = l:nplayer;

mi = aval(:,i)"';

ppi = pchoice(:,1);

ppil = repmat(ppi, 1, numa);
ppi® = 1 - ppil;

mil = repmat(mi, numx, 1);

34

mi® = 1 - mil;
ptrana = ptrana .* (ppil .” mil) .* (ppi® .” mio0);
end

7.3.2. Storing (I — BEL)

We compute the transition probability of states from the point of view of firm i who knows
her own action a;;, and the current market size s; but does not know other firms’ actions,
denoted fF (x;+1|st, x¢), and construct a matrix, FY. Then, we pre-calculate (I — BFL) before

estimation as it does not rely on 0.

i_bf = kron(ptranz, ones(numa, numa)) .* kron(ones(1l,numz), ptrana);
i_bf = eye(numx) - bdisc * i_bf;

7.3.3. Construction of explanatory variables

uobs0 and uobs1 will be matrices of constructed explanatory variables of each observation
for being inactive and active, respectively for the conditional logit estimation. eobs® and

eobs1 will store discounted and expected sums of ¢;; for each action and each observation.

uobs@ = zeros(nobsxnplayer, kparam);
uobsl = zeros(nobs*nplayer, kparam);
eobs® = zeros(nobs+nplayer,1);
eobsl = zeros(nobs*nplayer,1);

Then, for each player i, we follow these steps:

for i = 1l:nplayer

7.3.4. Matrices Pr(a;|ss, a;_1,a;)

mi = aval(:,1i)"';

ppi = pchoice(:,1);

ppi= (ppi>=myzero).x*(ppi<=(1l-myzero)).*ppi ...
+ (ppi<myzero) .*myzero ...
+ (ppi>(1-myzero)).+*(1l-myzero);

ppil = repmat(ppi, 1, numa);

35

ppi0® = 1 - ppil;

mil = repmat(mi, numx, 1);

mi0 = 1 - mil;

ptrani = ((ppil .”~ mil) .x (ppi® .~ mi0@));
ptranai® = ptrana .* (mi@ ./ ptrani);
ptranail = ptrana .* (mil ./ ptrani);
clear mi;

7.3.5. Computing h; = E[In(N_;; + 1)]

hi = aval;
hi(:,i) = ones(numa, 1);
hi = ptranail * log(sum(hi, 2));

7.3.6. Creating ZF(0) (umat0) and ZF (1) (umat1)
Firm i’s profit at time ¢ can be written as:

i1 (0) = €;(0)
= 2;;(0)0; +&(0)

mit(1) = OFc,i + Ors In(S;) — Orn In (1 + Z%t) —Opc(1 —ajs—1) +ei(1)
J#i
= Zit(l)ei + eit(l)
where z;; is a (kx1) vector of zeros, and z;(1) = {1,1n(5t),—1n (1 + Lji ujt>,—(1 —

az’,tfl)} and 6; = (0rc,i, Ors, OrN, OEC).
umat0 and umatl represent z;(0) and z;; (1), respectively.

umat@® = zeros(numx, nplayer+3);

umatl = eye(nplayer);

umatl = umatl(i,:);

umatl = [repmat(umatl, numx, 1), mstate(:,1), (-hi), (mstate(:,i+1)-1) 1;
clear hi;

7.3.7. Creating ZZ-P (sumu) and AZP (sume)

Then, denoting P;(x;) is the conditional choice probability of staying active that maximizes
the expected value of firm 7, the one-period expected profit of firm i will be

i (ait) = (1= Pi(x)) [zt (0)6; + €t (0)] + Pi(xe) [z (1)6; + e (1)]

_ Py , P
=z;0; +ey

where zﬁ and ell-z are the expected values of z;;(a;;) and € (a;;), respectively.
Since ¢;; follows the T1EV distribution, Eg;; is

el = Euler’s constant — (1 — P;(x;)) In(1 — P;(x;)) — Pi(x;) In(P;(x¢)).

ppil = kron(ppi, ones(1l, nplayer+3));

ppid® = 1 - ppil;

sumu = ppi0.*umat® + ppil.*xumatl;

sume = (1l-ppi).*(eulerc-log(l-ppi)) + ppi.*(eulerc-log(ppi));

clear ppi ppi@ ppil;

7-3.8. Creating ww

In Aguirregabiria and Mira (2007), a MPE is defined as a vector of choice probabilities

where for every firm i,
Pi(xt) = Gi([2};(1) — £}(0)]6; — [&;,(1) — &;;(0)])

where ZI is the expected and discounted sum of current and future z vectors, & is the
expected and discounted sum of realizations of ¢;;, and G; is the distribution of ¢;; which
is assumed as T1EV here.

[e0]
2h(an) = 2(ai) + E(L B2hres@inss) xi,)

s=1

o0
ég(ait) = E(ﬁseft+s(ai,t+s)|xt,ait>
s=1

Now we introduce WZI?, a vector of expected Z{;(ait), and W£ , a scalar value for expected
&ir(ait).
WE (x¢) = (1= Py(x4))2(0) + Py(x¢) 2 (1)
W, (x1) = (1= Pi(x))e};(0) 4 Py(x;)e};(1)

37

Using new notations, we can rewrite 25 (a;) and el (a;):

2h(aw) = zh(ai) + B Y. fF (e |xe, ai) WE (xp41)

xi1€X

Ha) =B Y. fF(xelxn ain) WE (x041).

Xt1€X

We can obtain the closed-form expression for Wzlj and Well_3 , where they are a (numx X k)

matrix with rows of WF (x;11) and a (numx x 1) matrix with rows of W/ (x411):

P
wr
P
A

(I = BFx) "' [(1 = P)Z(0) + RiZ{ (1)]
(I—BFx)"'ef.

In the code, we stack two equations and solve for WY and W simultaneously. ww is a
(numk x (k+1)) matrix of Wzlj and Welj stacked together.

= linsolve(i_bf, [sumu, sume]);
clear sumu sume;

7.3.9. Creating utilda and etilda

We can express z5(0) (utilda0), z£(1) (utildal), &5(0) (etilda@), and &5 (1) (etildal)
using Wzlj and Welj (ww).

ptranai® = kron(ptranz, ones(numa, numa)) .* kron(ones(1l,numz), ptranai0);
utilda® = umat® + bdiscx(ptranai@xww(:,l:kparam));

etilda®@ = bdiscx*(ptranai@*ww(:,kparam+1));

clear umat@ ptranai0;

ptranail = kron(ptranz, ones(numa, numa)) .* kron(ones(1l,numz), ptranail);
utildal umatl + bdiscx(ptranailxww(:,l:kparam));

etildal = bdisc*(ptranail*ww(:,kparam+1));

clear umatl ptranail;

7.3.10. Creating observations uobs and eobs

We now pick the values of 2/, and &}, that correspond to each observation using state index
matrix indobs and construct uobs@, uobs1, eobs0, and eobs1.

uobsO((i-1)=*nobs+1l:i*nobs,:) = utilda@(indobs,:);
uobsl((i-1)=*nobs+1l:i*nobs,:) = utildal(indobs,:);

38

eobsO((i-1)+*nobs+1l:ixnobs,:) = etilda@(indobs,:);
eobs1((i-1)*nobs+1:ixnobs,:) = etildal(indobs,:);
ud((i-1)*numx+1:i*numx,:) = utildao;
ul((i-1)*numx+1:ixnumx,:) = utildal;

etilda0;
el((i-1)*numx+1:i*xnumx,:) = etildal;

clear utilda® utildal etilda® etildal;

e0((i-1)*numx+1:ixnumx, :)

Create z¥" and e for each player i.

end

7.4. Pseudo Maximum Likelihood Estimation

We can express the pseudo likelihood function using z¥ and &/ obtained above.
SRR P P P P
Q(6,P) =Y 3= Y- aut (Gi([25(1) — 2E(0))6; — [1) — 2 (0)]))
ot

i=1m=1t=1

+ (1= a) (1= Gi([25(1) — 25 (0)]6, — [5(1) — 5 (0))))

~

Now we can obtain maximum likelihood estimates using the clogit function. The best
matrix stores estimates for each iteration and varb matrix stores variances of estimates.

[tetaest, varest] = clogit(aobs, [uobs@, uobsl], [eobs@, eobsl]);
best(:,iter) = tetaest;
varb(:, (iter-1)*kparam+l:iterxkparam) = varest;

7.5. Updating probabilities

Update the choice probabilities for each player i using the maximum likelihood estimates
from step 7.4. We assume that ¢; follows T1EV, so the conditional choice probability for

being active is exponential of choice specific value divided by sum of 1 and the nominator.
~ _PK-1 _pK-1 A _pK—1 _pK—1
B (xi) = G (|25 () =2 0] 65 = [(1) =2 (0)])

where PX~1 is the conditional choice probabilities obtained from the previous stage, and

0K is the parameter estimates from the first step in K-th iteration.

39

for i = 1l:nplayer
buff = (ul((i-1)*numx+1:ixnumx,:)-u@((i-1)*xnumx+1:i*xnumx,:));
buff = buffxtetaest ...
+ (el((i-1)*numx+1l:i*numx,:)-e0((i-1)*numx+1l:ixnumx,:));
pchoice(:,1) = exp(buff)./(l+exp(buff));
end

We iterate the NPL algorithm for npliter times.

end

This completes the NPL algorithm.

end

References

Aguirregabiria, V. (2009). Estimation of dynamic discrete games using the nested pseudo
likelihood algorithm: Code and application. MPRA Paper 17329, University Library of
Munich, University of Toronto. [1]

Aguirregabiria, V. and P. Mira (2007). Sequential estimation of dynamic discrete games.

Econometrica 75, 1-53. [1, 8, 11, 37]

Blevins, J. R. and M. Kim (2019). Nested pseudo likelihood estimation of continuous-time
dynamic discrete games. Working paper, The Ohio State University. [1]

40

	Main control program
	Selection of the Monte Carlo Experiment to Implement
	Values of Parameters and Other Constants
	Computing a Markov Perfect Equilibrium of the Dynamic Game
	Simulating Data from the Equilibrium
	Checking for Consistency of the Estimators
	Monte Carlo Experiment
	Saving Results of the Monte Carlo Experiment
	Statistics from the Monte Carlo Experiments

	Computation of Markov Perfect Equilibrium (mpeprob)
	Construct the mstate Matrix with Values of st, at-1
	Initializing the Vector of Probabilities
	Iterative algorithm
	Matrix of transition probs Pr(at | st, at-1)
	Matrices Pr(at | st, at-1, ait)
	Computing hi = E[ln(N-it + 1)]
	Matrices with Expected Profits of Firm i
	Transition Probabilities for Firm i
	Computing Value Function for Firm i
	Updating Probabilities for Firm i

	Reporting

	Procedure to Simulate Data from the Computed Equilibrium (simdygam)
	Generating Draws from the Ergodic Distribution of (st, at-1)
	Generating Draws of at given (st, at-1)

	Frequency Estimation of Choice Probabilities (freqprob)
	Estimation of a Logit Model by Maximum Likelihood
	Loglikelihood function for a logit model
	Estimation of a logit model by maximum likelihood (milogit)

	Maximum Likelihood estimation of McFadden's Conditional Logit (clogit)
	NPL Algorithm
	Construct the mstate Matrix with Values of st, at-1.
	Assign each state a state index (indobs)
	NPL algorithm
	Matrix of transition probabilities Pr(at|st, at-1)
	Storing (I-FxP)
	Construction of explanatory variables
	Matrices Pr(at|st, at-1, ait)
	Computing hi = E[ln(N-it + 1)]
	Creating ZiP(0) (umat0) and ZiP(1) (umat1)
	Creating ZiP (sumu) and iP (sume)
	Creating ww
	Creating utilda and etilda
	Creating observations uobs and eobs

	Pseudo Maximum Likelihood Estimation
	Updating probabilities

