
Updating the Centroid Decomposition with

Applications in LSI

Jason R. Blevins and Moody T. Chu

Department of Mathematics, N.C. State University

May 14, 2004

Abstract

The centroid decomposition (CD) is an approximate singular value decomposi-
tion (SVD) with applications in factor analysis and latent semantic indexing (LSI).
This paper presents updating methods for the centroid decomposition based on
recent work in SVD updating methods. A general rank-1 updating framework is
developed first and then more specific updates used in LSI are examined in this
framework.

1 Introduction

The centroid decomposition (CD) [9, 13, 18, 6] is an approximation to the singular
value decomposition (SVD) that is widely used in the applied statistics/psychometrics
(AS/P) community for factor analysis research [12, 14]. A recent paper by Chu and
Funderlic [9] unifies notions of the CD from the AS/P and numerical linear algebra
(NLA) communities in the factor analysis setting. They also develop a generalized
centroid decomposition with applications in latent semantic indexing (LSI) [10, 1, 2, 16]
and present it as a member of a larger class of truncated SVD approximations. Noting
the fundamental similarities between the centroid and singular value decompositions,
this paper develops a framework for a class of CD updating methods by building on
methods from SVD updating literature [20, 19, 8, 11, 7, 5] and specifically based on
Brand’s recent work on fast incremental SVD updating [3, 4].

Updating methods are particularly important for LSI applications, where the trun-
cated SVD, and the truncated centroid decomposition, can be used to find documents
relevant to given term queries. In real-time, on-line applications, where the term-
document (indexing) matrix is frequently modified, it becomes costly to keep the cor-
responding centroid decomposition up to date.

This paper is organized as follows. Section 2 provides a brief review of the ideas and
methods that provide a basis for our work: the centroid decomposition, LSI, and SVD
updating. Section 3 describes the notation and basic framework used for the general
rank-1 updating methods developed in section 4. Finally, section 5 describes the specific
types of matrix updates used in LSI.

1

2 BACKGROUND 2

2 Background

2.1 SVD Updating

The singular value decomposition is one of the most powerful tools of linear algebra
and provides many forms of insight about the data contained in a matrix. A SVD of
an m × l matrix H is any factorization of the form H = UΣV T where U is an m ×m
orthogonal matrix, Σ is an m × l diagonal matrix containing the singular values of H,
σ1, . . . , σl, and V is an l × l orthogonal matrix. The columns of U and V are called
the left and right singular vectors. We assume that the singular values are ordered so
that σ1 ≥ σ2 ≥ . . . ≥ σl ≥ 0. In this case, the closest rank-k approximation to H is,
conveniently, the rank-k truncated SVD of H which can be found by setting all but
the first k singular values equal to zero, so that Σk = diag(σ1, . . . , σk, 0, . . . , 0). This is
equivalent to taking only the first k columns of U , the k × k principal submatrix of Σ,
and the first k columns of V . The latter method is useful in computational applications
where storage is important.

Computing the SVD of a large matrix is computationally intensive and if the SVD
must be kept up to date when the matrix changes (as in LSI), recalculating it each time
can become overly burdensome in on-line applications. SVD updating methods concern
the following problem: Given a matrix and its SVD, if the matrix is modified, how
can we determine the new SVD without explicitly recalculating it? The first methods
appeared in the 1970’s and such methods generally fall into two categories: iterative
updates based on Lanczos or Ritz-Raleigh methods and subspace methods based on the
relationship between the full SVD and SVDs in a subspace.

2.2 The Centroid Decomposition

Among the AS/P community, Thurstone is generally credited with originating the cen-
troid method [18] although it was used as early as 1917 by Burt [6] and Horst, a student
of Thurstone, also provides an insightful treatment [13]. There are several variations
of the method but this paper follows the generalized centroid method and the corre-
sponding LSI model introduced by Chu and Funderlic [9] (Algorithm 8.1 and Section
7 respectively). They have revisited the centroid method in order to provide a more
mathematical treatment of its stochastic properties, explored its similarities with the
SVD, and shown that it can be generalized and applied to other applications such as
LSI.

The centroid decomposition of an m × l matrix A is a factorization of the form
A = BV T where B ∈ Rmtimesl is called the loading matrix and V ∈ Rl×l is called
the factor matrix. It can be formed by iteratively finding the centroid factors and
their corresponding factor loadings. Each step proceeds by finding the most significant
centroid factor and using it to perform a rank reduction on the original matrix. The
centroid factor at each step is found by choosing the sign vector, a vector containing
only the values 1 and -1, which maximizes the “weight” of the data in its direction.

The algorithm proceeds as follows: Define A1 ≡ A and Ai = Ai−1 − bivT
i for

i = 1 . . . l, where

zi = arg max
|z|=e

‖AT
i z‖, (2.1)

wi = AT
i zi, (2.2)

vi =
wi

‖wi‖
, (2.3)

2 BACKGROUND 3

CD: A = BV T SVD: A = UΣV̂ T

z1 = arg max|z|=e zT AAT z u1 = arg max‖x‖=1 xT AAT x

First sign vector First Left Singular Vector

µ1 = 1
n max|z|=e zT AAT z λ1 = max‖x‖=1 xT AAT x

First Centroid Value First Eigenvalue

v1 = AT z1√
nµ1

v̂1 = AT u1√
λ1

First Centroid Factor First Right Singular Vector

Table 1: Similarities between the centroid and singular value decompositions.

and
bi = AT

i vi. (2.4)

Then the vector zi is the sign vector corresponding with the centroid factor vi and
loading vector bi. Choosing the sign vector is essentially an O(n) hypercube traversal
problem.

The decomposition is only unique up to the orientation of the sign vectors. Any
sign vector and its inverse (negative) will extract essentially the same centroid factor
with opposite signs. Thus, depending on the starting sign vector and the order in which
successive sign vectors are chosen, the decomposition could be different. However, if
an initial sign vector, such as e = (1, . . . , 1)T , and a traversal path is chosen, the
decomposition is effectively unique for our purposes and it is safe to speak of “the”
centroid decomposition.

The centroid decomposition and SVD have many similarities, most notably in the
function of the sign vectors of the centroid method and the left singular vectors of the
SVD. The variational forms for the first sign vector and first left singular vector of a
matrix A are very similar (See Table 1). The sign vector z is constrained to the vertices of
an m-dimensional hypercube while the singular vector x is allowed to vary unconstrained
in Rm. The flexibility of the singular vector allows it to assume the direction which
maximizes its significance with respect to the data in A but it is expensive to compute.
The sign vector can be found using the centroid method, a fast O(n) iterative method,
but it is only a close approximation to the singular vector. Furthermore, there is a
close correspondence between the centroid values and the eigenvalues and between the
centroid factors and right singular vectors. See Section 6 of [9] for more on these
geometric and statistical similarities and numerical results.

2.3 LSI

Latent Semantic Indexing (LSI) is a method for automatic document indexing and
retrieval which takes advantage of the semantic structure between terms and the docu-
ments containing them in order to improve detection of relevant documents for a given
query. The main problems of previous lexical-matching indexing methods that LSI
seeks to overcome are synonymy, multiple words associated with a single concept, and
polysemy, a single word with multiple meanings [10]. LSI represents the documents in a
term-document matrix and uses the singular value decomposition (SVD) to model this
relationship in a reduced-dimension representation, using the closest rank-k approxima-
tion to the full SVD.

3 FRAMEWORK 4

LSI represents the documents in a term-document matrix and uses the singular value
decomposition (SVD) to model this relationship in a reduced-dimension representation,
using the closest rank-k approximation to the full SVD. Let H = [hij] ∈ Rm×l be
the term-document matrix, where hij is the weight of term i in document j and let
H = UΣV̂ T be the SVD of H. Then Hk ≡ UkΣkV̂ T

k is the closest rank-k approximation
to H where Uk and V̂k are formed by the first k columns of U and V̂ respectively and
Σk is the k-th leading principal submatrix of Σ.

Chu and Funderlic have suggested using the centroid decomposition in LSI because
of its similarity to the SVD and the low computational cost. We represent a user query
by a vector qT

i = (qi1, . . . , qim) ∈ Rm where the qik are term weights in the query. To
determine how well the documents match the query, calculate the matrix vector product

sT
i = qT

i H, (2.5)

where the entry sik in sT
i indicates the relevance of document k to the query. This

can be extended for multiple queries qT
i for i = 1, . . . , n. As with the SVD version of

LSI, there is a need store the term-document matrix in a more compact form without
losing accuracy. Thus instead of the original indexing matrix H, we can score the query
using the rank-k truncated CD approximation Hk = BkV T

k where Bk and Vk consist
of the first k columns of B and V respectively. In choosing an appropriate k for the
approximation, there is a trade-off between parsimony and accuracy. There is no “right”
choice of k, it depends heavily on the nature of the documents and the application.

3 Framework

3.1 Notation

Throughout the paper ei will be used to denote the ith standard basis vector, where the
ith component is 1 and all other components are 0. e is the vector of all ones. All vectors
are column vectors and are typeset in bold. We will sometimes denote the dimensions
of a matrix with subscripts for quick reference. For example, Hm×l indicates that H is
an element of Rm×l.

We will make frequent use of the fundamental matrix subspaces. Suppose H is an
m× l matrix where H = (h1, . . . ,hl), and hi are column vectors in Rm. Then,

R(H) = span{h1, . . . ,hl} ⊆ Rm (3.1)

denotes the range, or column space, of H and

N (H) = {v | Hv = 0} ⊆ Rl (3.2)

denotes the nullspace of H. The rowspace of H is the span of the rows of H or
R(HT) ⊆ Rl, the range of HT . The ⊥ symbol will denote the orthogonal compliment of
a vector space. Chapter 4 of [17] provides a more complete treatment of these concepts.

The relationship between the SVD and CD and the fundamental matrix subspaces
is central to the workings of these updating methods. Let H = UΣV̂ T be the SVD of
Hm×l and r = rank(H). Then Σ ∈ Rm×l with diagonal (σ1, . . . , σl) where σ1, . . . , σr > 0
and σr+1, . . . , σl = 0, U is m × m, and V̂ is l × l. If we partition the columns of
U = (ui) and V̂ = (vi) such that U = [U1 U0] and V̂ = [V̂1 V̂0] where U1 = (u1, . . . ,ur),
U0 = (ur+1, . . . ,um), V̂1 = (v1, . . . ,vr), and V̂0 = (vr+1, . . . ,vl), then:

1. V̂0 is an orthonormal basis for N (H)

3 FRAMEWORK 5

2. V̂1 is an orthonormal basis for N (H)⊥

3. U1 is an orthonormal basis for R(H)

4. U0 is an orthonormal basis for R(H)⊥

See [15] for a more in-depth treatment of the relationship between these subspaces and
the SVD.

These subspaces are central to subspace based updating methods such as Brand’s
[3, 4]. These methods project the updated data onto the fundamental subspaces which
allows the updated SVD to be rewritten in terms of the SVD of a simpler matrix. The
properties of the simple matrix can be leveraged to calculate its SVD quickly which
makes finding the updated SVD much easier.

Because the columns of the factor matrix V = (vi) from the centroid decomposition
are orthogonal and are close approximations to the right singular vectors, we have
developed similar subspace based updating methods for the centroid decomposition.
One drawback is the absence of any vectors emulating the left singular vectors. Thus,
we are limited to working in span{v1, . . . ,vl} = R(HT), the rowspace of H.

By projecting the updated data onto R(HT) and its orthogonal complement, we
can rewrite the updated CD in terms of the CD of a simpler matrix. The task then
becomes finding a fast way to find the CD of the simple matrix, which looks promising
because the simple matrix is usually formed from B and we show in section 4.2 that B
is a stationary point of the CD algorithm.

3.2 Matrix Updates

A matrix “update” usually involves modifying the existing elements, rows or columns of
a matrix or augmenting it with additional rows or columns which correspond to new or
incoming data. Other operations such as removing rows or columns are sometimes called
“downdates.” Instead of distinguishing between the many types of matrix modifications
we develop a single framework to handle all such operations using four basic matrix
operations: permutation, augmentation, truncation, and additive rank-1 updates. This
framework allows us to avoid defining algorithms for many special cases and focus only
on rank-1 updates.

Rank-1 updates are of the form H1 = H0+abT where H0 is an m×l matrix and a and
b are column vectors in Rm and Rl respectively. They are performed in the following
context: Suppose that the original data matrix H0 and its centroid decomposition,
H0 = B0V

T
0 , are given, where H0 ∈ Rm×l, B0 ∈ Rm×k, and V0 ∈ Rl×k. Any updated

matrix H1 can now be formed by performing a sequence of the four basic operations on
H0. Using this method, the dimensions of the updated data matrix H1 need not be the
same as H0.

The basic method proceeds as follows:

1. Suppose H0 = B0V
T
0 , a, and b are given.

2. Permute and pad H0 to the correct dimension with zero vectors to form H̃0 if
necessary.

3. Perform the rank-1 update H̃1 = H̃0 + abT using an appropriate update rule.

4. Truncate H̃1 to the correct dimension by removing zero vectors and permute if
needed to form H1.

4 RANK-1 UPDATING METHOD 6

For example, appending a column c to a matrix H0 can be accomplished by append-
ing a column of zeros to H0 and performing a rank-1 update as follows: Let H̃0 = [H0 0],
a = c and b = el+1 then:

H1 = H̃0 + abT =
[
H0 0

]
+ ceT

l+1 =
[
H0 c

]
(3.3)

In general, the data matrix H1 can be represented as a series of rank-1 updates of
a matrix H̃0 constructed from H0 by permuting rows and columns and appending or
truncating rows and columns of zeros. Permutations are needed for updates such as
removing the i-th column of H0. In many cases we will omit H̃0 and H̃1 for simplicity
and assume that H0 has already been padded to the correct dimension or that H1 will
be truncated later.

4 Rank-1 Updating Method

4.1 Central Identity

Suppose we are given the centroid decomposition of a matrix H0 = B0V
T
0 and we want

to perform a rank-1 update H1 = H0 + abT . How do we use the CD of H0 to find
the CD of the updated matrix H1 without explicitly calculating it? The problem can
be reduced to finding the CD of a simpler matrix S which serves as an intermediate
estimation of the loading matrix B0.

The columns of the factor matrix V0 form an orthogonal basis for R(HT
0), the

rowspace of H0. We can write HT
0 =

(
hT

1 , . . . ,hT
m

)
, BT

0 =
(
bT

1 , . . . ,bT
l

)
, and V0 =(

v1, . . . ,vl

)
so that

HT
0 = V0B

T
0 = (h1, . . . ,hm) = (v1, . . . ,vl) (b1, . . . ,bl) . (4.1)

Each column hj of HT
0 is a linear combination of columns of V0:

hj = (v1, . . . ,vl)bj = V0bj (4.2)

and the columns of V0 are mutually orthogonal so they are a basis for R(HT
0).

A rank-1 update can increase or decrease the rank of the matrix, and thus the
dimension of its rowspace, by at most 1. So we have:

dimR(HT
0)− 1 ≤ dimR(HT

1) ≤ dimR(HT
0) + 1. (4.3)

If the update increases the dimension of the rowspace, we can choose a matrix Q such
that [V0 Q] is an orthogonal basis for R(HT

1). The vectors in Q are needed to expand
the basis to include components of the update that aren’t in the span of the original
centroid factors. If the rank of the data matrix is not increased by the update, we can
simply omit Q and use the original factors. In the rank-1 cases we consider, if we require
Q it will be a single vector.

Although [V0 Q] is a basis for the updated rowspace R(HT
1), it does not necessarily

contain the true centroid factors because the update can modify the direction of the
original centroid factors as well. Therefore the “temporary” factors [V0 Q] must be
counter-rotated to align with the true ones (see Figure 1). In this way, we have identified
two independent effects of the matrix update: changing the number of factors and
modifying the data associated with those factors.

Consider the factorization H1 = S [V0 Q]T for some matrix S (defined below) using
the old centroid factors in V0 augmented with the temporary factors in Q. This is

4 RANK-1 UPDATING METHOD 7

(a) Original Matrix H0 (b) Updated Matrix H1

A new data vector (dashed) is added which rotates the centroid factors (bold). Data
vectors have been normalized to the unit circle.

Figure 1: Row Update

“almost” the centroid decomposition of H1 because adding a single vector will usually
not dramatically change the factors. We can find the new centroid factors V1 by finding
the centroid decomposition S = BSV T

S and then rotating [V0 Q] by VS :

H1 = H0 + abT

= S
[
V0 Q

]T

= BSV T
S

[
V0 Q

]T

= BS

([
V0 Q

]
VS

)T

= B1V
T
1 .

(4.4)

Therefore, by finding the CD of S we can construct the CD of H1 where

B1 = BS (4.5)

and
V1 =

[
V0 Q

]
VS . (4.6)

We can rewrite S in terms of known matrices as:

S =
(
H0 + abT

) [
V0 Q

]
=

[
H0V0 H0Q

]
+ abT

[
V0 Q

]
=

[
B0 0

]
+ a

[
bT V0 bT Q

]
=

[
B0 0

]
+ a

[
V T

0 b
QT b

]T

.

(4.7)

Thus, S can be formed by a rank-1 update of [B0 0]. We show in Section 4.2 that B
is a stationary point for the centroid method. If we can exploit this in calculating the
CD of S then we can potentially significantly reduce the time required to compute the
updated CD. In practice we would use H̃0 = B̃0Ṽ T

0 as the starting point but we assume
here that the zero vectors have already been appended.

4 RANK-1 UPDATING METHOD 8

(a) Data Matrix A = BV T (b) Factor Matrix B

Figure 2: The data vectors and centroid factors (bold) of A and B compared.

4.2 A Stationary Point

We will show below that the loading matrix B is a stationary point for the centroid
algorithm. This is important because we hope to take advantage of efficiencies in finding
the CD of S in equation (4.7) and S is only a rank-1 update away from B. Figure 2
provides a geometric interpretation of this proposition. Essentially, the centroid factors
have already been “factored out” of the data matrix leaving B with the primary factors
aligned with the standard basis vectors.

Proposition 4.1. If Am×l = Bm×lV
T
l×l is the centroid decomposition of some matrix

A, then B = BIT is the centroid decomposition of B.

Proof. We apply the general centroid algorithm as described in Section 2.2 to A and B
and denote the steps of the algorithm applied to B with primes. For example: B1 ≡ B
and Bi = Bi−1 − b′iv

′
i
T . Let ei denote the i-th column of the identity matrix and e

denote the vector of all ones. It is important to note that for any j, vT
j V = eT

j since
V V T = I. The proof proceeds by induction over the iteration index by showing that at
each step in the algorithm applied to B: z′i = zi, v′i = ei and b′i = bi.

For the initial iteration, i = 1, we have A = BV T , A1 ≡ A, and B1 ≡ B = AV =
A1V . It follows that

z′1 = arg max
|z|=e

‖BT
1 z‖ = arg max

|z|=e
‖V T AT

1 z‖ = arg max
|z|=e

‖AT
1 z‖ = z1, (4.8)

v′1 =
w′

1

‖w′
1‖

=
BT

1 z′1
‖BT

1 z′1‖
=

(A1V)T z1

‖(A1V)T z1‖
= V T AT

1 z1

‖AT
1 z1‖

= V T v1 = e1, (4.9)

and

b′1 = Bv′1 = Be1 = b1. (4.10)

So the induction hypothesis is true for i = 1. Suppose it holds true for i = j − 1.
That is, suppose z′j−1 = zj−1, v′j−1 = ej−1 and b′j−1 = bj−1. Then,

5 LSI OPERATIONS 9

Bj = Bj−1 − b′j−1v
′T
j−1 = Aj−1V − b′j−1v

′T
j−1 = Aj−1V − bj−1eT

j−1

= Aj−1V − bj−1vT
j−1V = (Aj−1 − bj−1vT

j−1)V = AjV, (4.11)

z′j = arg max
|z|=e

‖Bjz‖ = arg max
|z|=e

‖AjV z‖ = arg max
|z|=e

‖Ajz‖ = zj , (4.12)

v′j =
w′

j

‖w′
j‖

=
BT

j z′j
‖BT

j z′j‖
=

(AjV)T zj

‖(AjV)T zj‖
= V T

AT
j zj

‖AT
j zj‖

= V T vj = ej , (4.13)

and finally,
b′j = Bv′j = Bej = bj . (4.14)

So if B = B′V ′T is the centroid decomposition of B, then B′ = (b′i) = (bi) = B and
V ′ = (v′i) = (ei) = I.

5 LSI Operations

More specific types of matrix updates commonly used in LSI can now be examined in
the context of the updating framework outlined in Section 4. The basic LSI database
operations are outlined in Table 2 and two of them, term or row updates and document
or column updates are explored in more detail. Using the rank-1 updating framework
allows us to apply essentially the same updating algorithm to each situation, rather
than defining separate updates for rows and columns or terms and documents. We look
at each update in terms of equation (4.4) by first finding an appropriate Q to extend
the original orthogonal basis V and then using information about the specific update,
given in Table 2, to simplify the rule for S given by equation (4.7).

Let H0 be an m × l term-document matrix with m >> l let B0V
T
0 = H0 be it’s

centroid decomposition. Suppose a rank-1 update is applied to the matrix to form a
new matrix H1 so that H1 = H0 + abT where a ∈ Rm and b ∈ Rl. Depending on the
type of update, we can choose a and b accordingly.

5.1 Term Updates (Appending a Row)

A term update, adding a new term to the database, consists of appending a row to the
term-document matrix. We want to find the CD of the matrix H1 =

[
H0

rT

]
∈ R(m+1)×l.

In order to cast this problem into our rank-1 updating framework, we begin by appending
a row of zeros to H0 to form the intermediate matrix H̃0 =

[
H0
0

]
. H̃0 has the same

dimensions as the updated matrix H1 and since the CD of H0 is given, finding the CD
of H̃0 is straightforward:

H̃0 =
[
H0

0

]
=

[
B0

0

]
V T

0 = B̃0Ṽ0
T
. (5.1)

Now, the row append can be expressed as the rank-1 update H1 = H̃0 +abT , where
a = em+1 and b = r. Knowing a and b allows us to simplify equation (4.7) using a
subspace argument. As before, we suppose H0 has already been padded with zeros in
order to drop the tilde.

5 LSI OPERATIONS 10

Operation Known Desired a bT

Add Term
(Row, r ∈ Rl)

[
B0
0

]
V T

0 =
[

H0
0

]
B1V

T
1 =

[
H0

rT

]
em+1 rT

Add Document
(Column, c ∈ Rm)

B0

[
V0
0

]T = [H0 0] B1V
T
1 = [H0 c] c eT

l+1

Remove Term
(Row, r ∈ Rl)

B0V
T
0 =

[
H1

rT

]
B1V

T
1 =

[
H1
0

]
em+1 −rT

Remove Document
(Column, c ∈ Rm)

B0V
T
0 = [H1 c] B1V

T
1 = [H1 0] −c eT

l+1

Weight Adjustment
(Element, hij + w)

B0V
T
0 = H0 B1V

T
1 = H0 + weieT

j ei weT
j

Table 2: LSI operations expressed as rank-1 updates where H0 ∈ Rm×l, c ∈ Rm, r ∈ Rl,
and w ∈ R.

First in order to satisfy equation (4.4), we must find a matrix Q so that [V0 Q] is
a basis for R(HT

1), the rowspace of the updated matrix. We would need at most one
additional basis vector in the rank-1 update case so here Q is a single vector. It is
possible that the update could decrease the rank of the matrix, but this case would best
be dealt with when considering term removal. We consider the other two cases: either
the update increases the rank of the matrix, and thus the dimension of the updated
rowspace, or it doesn’t. In the former case we will require Q and in the latter we can
omit it.

Next equation (4.7) can be simplified by projecting b onto two orthogonal comple-
mentary subspaces of Rl. R(HT

0) = R(V0) is the rowspace of H0 and let R(V0)⊥ be its
orthogonal complement in the rowspace of H1. The vector Q, which we find later, will
be the extra basis vector that spans this orthogonal complement. The component of b
in R(V0) is

n ≡ V T
0 b (5.2)

and the projection of b onto the orthogonal complement is

q ≡ (I − V0V
T
0)b = b− V0V

T
0 b = b− V0n. (5.3)

So ‖q‖ indicates whether the update has increased the rank of the matrix. Now there
are two cases.

Case 1: ‖q‖ 6= 0. In this case, part of b lies in R(V0)⊥ and there exists a basis
vector Q such that

b = QQT b + V V T b = Q‖q‖+ V n. (5.4)

Then from equation (5.3) we find Q = q
‖q‖ . Substituting Q into equation (4.7) gives

S =
[[

B

0

]
0
]

+
[
0
1

] [
n
‖q‖

]T

=
[
B 0
0 0

]
+

[
0 0
nT ‖q‖

]
=

[
B 0
nT ‖q‖

] (5.5)

6 CONCLUSION 11

Case 2: ‖q‖ = 0. In this case, b lies completely within the rowspace of H0 so an
additional basis vector is not needed. Thus Q and ‖q‖ can be omitted from the equation
to find

S =
[
B

0

]
+

[
0
1

]
nT =

[
B

nT

]
. (5.6)

After finding the CD of S, the updated CD of H1 can be constructed using equations
(4.5) and (4.6).

5.2 Document Updates (Appending a Column)

Suppose now that we want to append a column c, representing a new document, to H0.
What is the updated CD B1V

T
1 = [H0 c]? First, by restating the problem as a rank-1

update we can simplify the problem. We find, as in Table 2, that a = c and bT = eT
m+1.

First we find n, q and Q as above:

n ≡ Ṽ0
T
b =

[
V T

0 0
] [

0
1

]
= 0, (5.7)

q ≡ (I − V0V
T
0)b = b− V0V

T
0 b = b− V0n = b = el+1, (5.8)

and
Q =

q
‖q‖

= el+1 (5.9)

Since the column update involves a column of the identity matrix, equation (4.7) can
be simplified:

S =
[
B̃0 0

]
+ c

[
Ṽ0

T
b

QT b

]T

=
[
B0 0

]
+ c

[
V0

0

]T

eT
l+1

QT eT
l+1

T

=
[
B0 0

]
+ c

[
0

eT
l+1el+1

]T

=
[
B0 0

]
+ c

[
0
1

]T

=
[
B0 c

]

(5.10)

The updated centroid decomposition of H1 can be determined by using the CD of
S and equations (4.5) and (4.6).

6 Conclusion

We have developed a flexible rank-1 updating framework for the centroid decomposition
that is built on ideas from subspace based SVD updating methods. Unfortunately the
efficiencies of simplifying the SVD updating problem do not directly translate to the
CD problem. We have shown that B is a stationary point of the algorithm and that
two fundamental LSI updates can be expressed in terms of B. Thus if a relationship
can be found to quickly calculate the CD of the simple S matrices based on B then

REFERENCES 12

finding the CD of the updated matrix will only require a few simple orthogonal rotations.
This should be a major focus for future work along with investigating the implications
of using the rank-k truncated CD as a starting point, analyzing the complexity and
storage requirements of the algorithms, determining the resulting updated sign vectors,
and implementing additional updates used in LSI as well as factor analysis.

References

[1] M. W. Berry. Large-scale sparse singular value computations. The International
Journal of Supercomputer Applications, 6(1):13–49, Spring 1992.

[2] M. W. Berry, S. T. Dumais, and G. W. O’Brien. Using linear algebra for intelligent
information retrieval. SIAM Review, 37(4):573–595, December 1995.

[3] M. E. Brand. Incremental singular value decomposition of uncertain data with
missing values. European Conference on Computer Vision (ECCV), 2350:707–720,
May 2002.

[4] M. E. Brand. Fast online svd revisions for lightweight recommender systems. In
Proceedings, SIAM 3rd International Conference on Data Mining, 2003.

[5] J. R. Bunch and C. P. Nielsen. Updating the singular value decomposition. Nu-
merische Mathematik, 31:111–129, 1978.

[6] C. Burt. The Distribution and Relations of Educational Abilities. P. S. King and
Son, London, 1917.

[7] P. A. Businger. Updating a singular value decomposition. BIT, 10:376–397, 1970.

[8] S. Chandrasekaran, B. S. Manjunath, Y. F. Wang, J. Winkeler, and H. Zhang.
An eigenspace update algorithm for image analysis. Graphical models and image
processing: GMIP, 59(5):321–332, 1997.

[9] M. T. Chu and R. E. Funderlic. The centroid decomposition: Relationships between
discrete variational decompositions and svds. SIAM Journal on Matrix Analysis
and Applications, 23(4):1025–1044, 2002.

[10] S. C. Deerwester, S. T. Dumais, T. K. Landauer, G. W. Furnas, and R. A. Harsh-
man. Indexing by latent semantic analysis. Journal of the American Society for
Information Science, 41(6):391–407, 1990.

[11] M. Gu and S. C. Eisenstat. A stable and fast algorithm for updating the singular
value decomposition. Technical Report YALEU/DCS/RR-966, Yale University,
New Haven, CT, 1993.

[12] H. H. Harman. Modern Factor Analysis. University of Chicago Press, Chicago,
1967.

[13] P. Horst. Factor Analysis of Data Matrices. Holt, Rinehart and Winston, New
York, 1965.

[14] W. Heiser L. Hubert, J. Meulman. Two purposes for matrix factorization: A
historical appraisal. SIAM Review, 42:68–82, 2000.

[15] S. Leach. Singular value decomposition - a primer. Unpublished Manuscript, De-
partment of Computer Science, Brown University, Providence, RI, USA, 1995.

REFERENCES 13

[16] T. A. Letsche and M. W. Berry. Large-scale information retrieval with latent
semantic indexing. Information Sciences, 100:105–137, 1997.

[17] C. D. Meyer. Matrix Analysis and Applied Linear Algebra. SIAM, 2000.

[18] L. L. Thurstone. Multiple factor analysis. Psychological Review, 38:406–427, 1931.

[19] D. I. Witter and M. W. Berry. Downdating the latent semantic indexing model for
conceptual information retrieval. The Computer Journal, 41(8):589–601, 1998.

[20] H. Zha and H. D. Simon. On updating problems in latent semantic indexing. SIAM
Journal on Scientific Computing, 21(2):782–791, 1999.

