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Abstract. Continuous-time formulations of dynamic discrete choice games offer notable
computational advantages, particularly in modeling strategic interactions in oligopolistic
markets. This paper extends these benefits by addressing computational challenges in order
to improve model solution and estimation. We first establish new results on the rates of
convergence of the value iteration, policy evaluation, and relative value iteration operators
in the model, holding fixed player beliefs. Next, we introduce a new representation of the
value function in the model based on uniformization—a technique used in the analysis of
continuous time Markov chains—which allows us to draw a direct analogy to discrete time
models. Furthermore, we show that uniformization also leads to a stable method to compute
the matrix exponential, an operator appearing in the model’s log likelihood function when
only discrete time “snapshot” data are available. We also develop a new algorithm that
concurrently computes the matrix exponential and its derivatives with respect to model
parameters, enhancing computational efficiency. By leveraging the inherent sparsity of
the model’s intensity matrix, combined with sparse matrix techniques and precomputed
addresses, we show how to significantly speed up computations. These strategies allow
researchers to estimate more sophisticated and realistic models of strategic interactions

and policy impacts in empirical industrial organization.
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1. Introduction

Understanding the dynamics of market structure and competition in oligopolistic industries
has been a foundational goal of modern empirical industrial organization. Beginning with
the seminal works of Bresnahan and Reiss (1991) and Berry (1992), the field has transitioned
from static models of market entry to dynamic frameworks that capture the forward-looking
behaviors of firms, influenced by methodological advancements from Aguirregabiria and Mira
(2007), Bajari, Benkard, and Levin (2007), Pesendorfer and Schmidt-Dengler (2008), and
Pakes, Ostrovsky, and Berry (2007). These frameworks have expanded the analytical scope
to include market power, entry deterrence, and industry evolution. However, the shift to
dynamic strategic interactions introduced significant computational challenges, particularly
with discrete time models where solving dynamic equilibrium models becomes complex
as the number of players increases. Additionally, the focus on discrete time models with
simultaneous moves has been driven by the prevalence of discrete time “snapshot” data.
However, in reality often events unfold sequentially—whether observed or not—leading to
much different strategic implications.

The introduction of continuous time models in dynamic discrete choice games by Do-
raszelski and Judd (2012) and Arcidiacono, Bayer, Blevins, and Ellickson (2016) was aimed
at addressing the computational limitations of discrete time models. These models also offer
a more granular representation of decision-making processes which unfold in a stochastic,
sequential manner and align with the nature of strategic interactions in many real-world
settings. Doraszelski and Judd (2012) showed that continuous time modeling simplifies the
computation of players’ expectations over future states, thereby reducing the computational
costs relative to discrete time models. Arcidiacono, Bayer, Blevins, and Ellickson (2016)
developed an empirical framework and two-step CCP estimator based on the seminal contri-
butions of Hotz and Miller (1993) and Hotz, Miller, Sanders, and Smith (1994). Blevins
(2022) considered identification and estimation of the move arrival rate, which was previ-
ously held fixed, and further extended the model to allow for heterogeneity in move arrival
rates. Blevins and Kim (2024) later extended the nested pseudo likelihood estimator of
Aguirregabiria and Mira (2007) to the case of continuous time games.

Despite these advancements, the empirical application of continuous time models, partic-
ularly for estimating dynamic discrete choice games, still faces computational challenges.
In particular, when researchers are limited to using snapshot data—a common scenario in
many empirical contexts—efficient computation of the matrix exponential becomes critical
in models with high-dimensional state spaces. The sparsity of the transition rate matrix
(intensity matrix) is a key feature that our methods exploit to improve computational effi-

ciency, not only in computing the matrix exponential but also in facilitating value iteration



or policy iteration. Snapshot data, which provides only periodic observations of the state
variables without precise timing of transitions, necessitates the use of log likelihood functions
that involve the matrix exponential operator. This underscores the importance of efficient
computational methods for the matrix exponential.

This paper contributes to the literature by introducing theoretical and computational
innovations to enhance the solution and estimation of continuous time dynamic discrete
choice models. We begin with a review of the model and assumptions in Section 2. In
Section 3, we begin by establishing the contractivity and modulus of contraction of the
Bellman optimality operator for continuous time dynamic discrete choice games when beliefs
are held fixed (including single agent models as a special case). Next, inspired by the method
of uniformization, introduced by Jensen (1953) for continuous time Markov chain analysis,
we develop a new uniform representation of the value function which allows us to draw direct
comparisons to the discrete time dynamic discrete choice literature in order to establish
rates of convergence for policy iteration, as well as relative value iteration following Bray
(2019).

Next, we turn to computation of the log likelihood function with snapshot data in
Section 4. We show how to apply uniformization as an efficient method for computing the
matrix exponential in a way that is optimized for the sparse structure of transition rate
matrices in the model. Accurate and fast evaluation of the matrix exponential is crucial for
accurately estimating models using discrete time snapshot data. Additionally, we develop
a new algorithm to augment the uniformization algorithm to allow for the simultaneous
calculation of derivatives of the matrix exponential with respect to model parameters. This is
vital for computationally efficient and accurate estimation using the log likelihood function.

In Section 5 we then focus on specific implementation details for computing the value
function and the matrix exponential. Namely, we describe how to use sparse matrix methods
in conjunction with precomputed addresses to improve computational efficiency for solving
and estimating the model. Finally, we consider areas to apply parallelization.

To demonstrate the practical utility of our computational methods, in Section 6 we
conduct Monte Carlo experiments on a dynamic entry-exit model with stochastic market
demand. These experiments highlight the efficiency and accuracy of our approach, where
we comparing the use of analytical versus numerical Jacobian derivatives in estimating the
structural model parameters.

By identifying these computational efficiencies, we aim to enable researchers to more
effectively estimate and simulate dynamic discrete choice models in continuous time, paving
the way for deeper insights into strategic interactions and policy interventions in oligopolistic

markets using more complex and realistic models.



2. A Continuous Time Dynamic Discrete Choice Game with Stochastically

Sequential Moves

We consider a continuous time dynamic discrete choice game involving N agents, indexed

by i =1,..., N, who operate in an infinite, continuous time horizon indexed by ¢ € [0, c0).

State Space 'The state space in the model defines all relevant market configurations at any
point in time. It encapsulates both exogenous and endogenous variables that influence
decision-making and strategic interactions among the agents.

At any instant ¢, the state of the system is represented by a state vector x within a
finite state space X. This vector includes all payoff-relevant information that is common
knowledge among the agents. Each state vector ¥ € X', where k indexes the discrete states,
represents a specific combination of attributes and conditions of the market and the agents
therein. For analytical tractability and practical implementation, the state space is assumed
to be finite, with K = |X'| denoting the total number of unique states. Furthermore, we will
generally prefer to work with the linearized state space K = {1,..., K} and will refer to
states by their index k rather than as a vector z, as this will allow us to vectorize many
expressions.

The components of the state vector can vary depending on the specific application
but typically include variables such as agent-specific attributes and market conditions. For
example, x may include each agent’s current market entry status, product quality, technology
level, or any other characteristic that affects their decisions and payoffs. Usually x also
contains exogenous variables representing the economic environment such as measures of

market demand.

Decisions & Endogenous State Changes Agents, indexed by i, make decisions from a set of
available actions, A =0,1,...,J — 1, at decision times that occur stochastically. The timing
of these decisions is governed by Poisson processes with rate parameters \;, which can vary
by agent, reflecting the frequency of decision opportunities for each agent. We assume
A < oo, reflecting the cost of attention or other exogenous frictions or bounds on the rate
of action.

The outcome of an agent’s decision is a deterministic change in the state of the system.
Each action j chosen by agent 7 in state k leads to a transition to a new state, denoted by
[(i,7,k). This function links each decision with its effect on the state vector.

For example, in a market entry and exit model, an agent’s decision to enter in a given
state might lead to an increase in the number of active firms within the market, altering the

competitive dynamics and, thus, the state vector to reflect this new market configuration.



The rate at which these endogenous state transitions occur is a function of the decision
rate \; and the conditional choice probabilities o;;;,, which represent the probability of agent
¢ choosing action j in state k. The product A;o;;x gives the transition rate for each possible
action, integrating the stochastic nature of decision timing with the strategic selection of
actions.

We assume that agents in the model are forward-looking, considering the future implica-
tions of their current decisions. The decision-making process and resultant state transitions
adhere to Markov properties, ensuring that the future evolution of the system depends only
on the current state and the decisions made within it.

The strategic decision-making process and the resulting endogenous state changes are
central to determining the equilibrium of the model. Agents formulate their strategies based
on their beliefs about the actions of others and the dynamics of the environment, seeking to
maximize their expected payoffs over time. The equilibrium concept employed is Markov
Perfect Equilibrium (MPE), where agents’ strategies form a Nash equilibrium in every
state of the model, taking into account both the endogenous and exogenous dynamics of
state changes. We will define the equilibrium concept below, after describing the remaining

components of the model.

FEzogenous State Changes Exogenous state changes capture the evolution of the environment
due to factors outside the control of the agents. In the model, an artificial player referred to
as “nature,” indexed by i = 0, is responsible for exogenous state changes. Nature’s actions,
much like those of the agents, result in transitions between states in the state space X.
However, unlike agent-driven transitions, these changes are not the result of strategic choices
but rather represent random events or systematic shifts in the external environment.

Exogenous state changes are modeled using a Markov jump process characterized by an
intensity matrix Qo. For k # [, the (k,l) element of this matrix, denoted qgx;, represents
the rates at which the system transitions away from state k to state [ due to exogenous
factors. For example, qgg; could represent the rate at which a technological advancement
occurs, altering the competitive dynamics among firms.

The transition rate ggr; could be zero, indicating that direct, instantaneous transitions
from state k£ to state [ do not occur. Consequently, the aggregate rate at which the system
transitions away from state k given by the sum Zf;k qoxl- Accordingly, the k-th diagonal

element, qoik, is defined to be minus this rate:

K
(1) qokk = — Y qokt-
=1

Therefore, Qg is itself a proper intensity matrix with zero row sums.



Payoffs In the continuous time setting we distinguish between flow payoffs and instantaneous
payoffs. Flow payoffs u;; accrue constantly to agent ¢ while the model remains in state k.
They are continuous in nature, reflecting the ongoing benefit or cost to the player as long as
the state of the environment remains unchanged.

In contrast to the continuous accrual of flow payoffs, instantaneous choice-specific payoffs,
denoted by c¢;jx, are incurred at the moment player 7 chooses action j in state k. We assume
these payoffs are additively separable into a deterministic component, 1;;, representing
the mean payoff associated with choosing action j in state k, and a stochastic component,
€ijk, Which is a choice-specific unobserved payoff shock observed only by the player. This
separation allows for the modeling of uncertainty and private information in the decision-

making process.

Assumptions Before turning to the equilibrium, we state the main assumptions of the model,
following Arcidiacono, Bayer, Blevins, and Ellickson (2016) and Blevins (2022):
Assumption 1 (Discrete States). The state space is finite: K = |X| < oo.

Assumption 2 (Discount Rates). The discount rates p; € (0,00),i =1,..., N are known.

Assumption 3 (Move Arrival Times). Move arrival times follow independent Poisson
processes with rate parameters \; for each player i = 1,..., N and ggx; for exogenous state

changes from each state k to [ # k due to nature, with 0 < \; < 00, 0 < gorz < 00, and
> ik dokt > 0.

Assumption 4 (Bounded Payoffs). The flow payoffs and choice-specific payoffs satisfy
luik| < oo and || < oo foralli=1,...N,j=0,...,J —1l,and k=1,..., K.

Assumption 5 (Additive Separability). The instantaneous payoffs are additively separable
as Cijk = Yijk + Eijk-

Assumption 6 (Costless Continuation & Distinct Actions). For all ¢ = 1,..., N and
k=1,...,K:

(a) U(4,7,k) = k and 1)y, = 0 for j =0,

(b) 1(i,j,k) #1(i,j', k) for all j =0,...,J — 1 and j' # j.

Assumption 7 (Private Information). The choice-specific shocks ¢;;; are iid across players 4,
states k, and decision times ¢. The joint distribution Fj; is known, is absolutely continuous
with respect to Lebesgue measure (with joint density f;x), has finite first moments, and has

support equal to R”7.



The previously mentioned Assumptions 1-5 lay the groundwork for the model’s structure
and dynamics. Assumption 6 clarifies the role of the action j = 0, designating it as a neutral
continuation action that carries no direct cost and does not alter the current state. This
particular action can be likened to selecting the “outside option” in demand models, serving
as a baseline or reference choice when no other actions within the model are taken. This
assumption is needed for identification, ensuring that the choice to remain in the current
state is distinct and carries no immediate payoff. Moreover, Assumption 6 stipulates that
any action j > 0 must lead to a tangible and potentially observable change in the state,
thereby ensuring that all actions within the choice set are substantially different from one
another. Assumption 7 describes our assumptions on the idiosyncratic error terms in the
model and mirrors similar assumptions used in discrete time models (Aguirregabiria and
Mira, 2010).

Strategies, Value Functions, and Best Responses A strategy for a player in this model is a
rule that specifies the action the player will take in every possible state of the world. More
formally, a strategy for player ¢, denoted J;, maps each state k € K and a vector of choice-
specific shocks €;, € R” to an action in the choice set A. Any policy 6; determines associated

choice probabilities
(2)  oijk = Pr[di(k,eix) = j | K]

for all choices j and states k.

To determine an optimal strategy, we must consider player i’s beliefs ¢; about the actions
of other players, reflecting the strategic interdependence inherent in the game. Let ¢,
represent the beliefs held by player ¢ about the choices made by rival m, characterized by
a set of probabilities across J actions and K states for each possible state k and action j.

Given beliefs

(3) G =(Sis--sSiie1,Siit1s---sSi,N)

about each rival, a best response for player i is a strategy that maximizes the player’s
expected utility, given the strategies (or equivalently, the choice probabilities) of all other
players.

Based on the beliefs ¢; that player ¢ holds, we can describe the value function as a
vector of length K, denoted V;(s;) = (Vi1(%i), ..., Vir(si))". Here, each element, Vix(s;),
represents the expected present value of future rewards beginning in state k£ and making
optimal decisions thereafter, considering the beliefs ¢;. For a brief time span 7, following

Assumption 3, the likelihood of an event with rate A; happening is \;7. With p; as the



discount rate, the discount factor over this interval is 1/(1 + p;7). Consequently, during the

interval 7, the expected present value while in state k simplifies to:

J-1
1

Vie = 7 o7 |k S aorVi+ D> AmT Y SimikVii(m,jk)
piT 14k mi =0

N
—I—)\iTEm]aX {¢]k + €ijr + ‘/i,l(i,j,k)} + (1 - Z AT — Z CJOle) Vik + o(7)
i=1 1%k

The term o(7) accounts for the diminishingly small probabilities of multiple events occurring
within 7, which are negligible as T approaches zero. After simplification and as 7 tends

towards zero, we derive the recursive formula for V;; under player i’s beliefs ¢; as follows:

(4)

v, Uik + 21k okt Vit + 2omzi Am 225 Simik Vi(mogiky) + A Emax{vijk + ik + Viajn t
ik =

Pi + 21k Qokl + 2 Am

This representation shows the balance between the immediate flow payoff in state k, the
expected values following exogenous and endogenous state transitions, and the anticipated
outcomes of player i’s decisions, all adjusted for the probability of occurrence within a short
interval and discounted appropriately. The expectation is over the joint distribution of

ik = (Ei0ky > Eid—1k) -

Definition. Let T}, denote the Bellman optimality operator for player ¢ with beliefs g;,
Vi=T,,Vi,

defined by stacking (4) across states k = 1,..., K.

Mathematically, a strategy 0;(k,e;;) is a best response if it assigns an action j that
maximizes the expected utility in state k, given the shock &;; and the player’s beliefs about

others’ strategies ¢;:
(5)  bilk,eir) =J = ik + ik + Vi g (i) = i + €k + Vi () Vi e J.

In this paper we focus on the concept of Markov perfect equilibrium (MPE) as defined for
continuous-time dynamic games by Arcidiacono, Bayer, Blevins, and Ellickson (2016). They
also demonstrate the existence of equilibrium, providing a basis for applying this definition
in the present framework. Although the probability of simultaneous moves is zero in this
framework, which effectively eliminates one source of multiplicity, Blevins and Kim (2024)

showed that in general there may still be multiple equilibria.



2.1. Continuous Time Markov Chains

The reduced form of the model is a finite state continuous time Markov chain, also known as
a Markov jump process. The process is a stochastic process X (¢) for t € [0, 00), with values
in the state space X'. Observing this process from an arbitrary starting point ¢ in state X (),
it persists in this state for a randomly determined duration 7, subsequently transitioning to
a different state X (¢ + 7). This duration, 7, is known as the holding time, and the process’s
evolution over time can be described as a piecewise-constant, right-continuous function of
time characterized by jumps at intervals governed by a Poisson process, making the holding
times exponentially distributed. We provide here a brief overview of key results on Markov
jump processes. For a comprehensive discussion, refer to Karlin and Taylor (1975, Section
4.8), Tijms (2003, Chapter 4), or Chung (1967, part II).

We will represent such a processes using its intensity matriz or infinitesimal generator
matriz, which succinctly captures the process’s dynamics. Consider a generic intensity matrix

Q, defined as follows:

qQ1 qi2 ... Q1K
q21 Q922 ... Q2K
Q= . s
qK1 4K2 ... 4KK

where, for k #£ [,

L Pr[X(t+h) =1] X(t) =K
o = Jimy h

represents the instantaneous rate at which transitions occur from state k£ to state [. The
diagonal elements, qx, are set to — Zl#k qr1, ensuring that the sum of each row is zero. The
rate parameter for the exponential distribution of holding times before exiting state k is
given by —qir, equating to the aggregate of off-diagonal rates of transition out of state k.
When the process exits state k, it transitions to a different state [ # k with the probability
ratio qui/ 3 ik Gkl = —Qkt/ Q-

Often we need to calculate the probabilities of transitioning from one state to another
over a specific time interval, A. For example, we need to calculate these probabilities to
estimate model parameters using snapshots of data sampled at uniformly-spaced intervals
of length A (e.g., one year or one month). This leads us to the concept of the transition
probability matriz P(A), which contains the probabilities of moving from each state k to
every other state [ after time A.

For a continuous time Markov chain with intensity matrix @Q, the transition probability



matrix P(A) for a time interval A is given by the matrix exponential of AQ, denoted
exp(AQ), defined by its Taylor series expansion:
(AQ)*  (AQ)?

=1+AQ+ =+ 5+,

(AQY
!

©) Pa)=ens@) =3 88

J=0

where I is the identity matrix. The (k,) element of P(A), denoted as p;j(A), represents
the probability that the process transitions from state k to state [ over the interval A.

Despite its theoretical clarity, directly calculating the matrix exponential can be challeng-
ing, particularly for large matrices. Computing the transition probabilities via (6) directly
is not ideal for several reasons. First, it requires the computation of an infinite series,
which, in practice, must be truncated to a finite number of terms. Determining the proper
truncation point is important. Computing matrix powers can be computationally intensive
and numerically unstable, especially for matrices that are not well-conditioned. In many
applications, such as continuous time dynamic discrete games, the intensity matrices are
sparse. The direct approach does not exploit this sparsity in computing powers of P, leading
to unnecessary computational work and higher storage requirements.

Various numerical methods have been developed to approximate the matrix exponential,
such as Padé approximations and scaling and squaring methods. In their classic article,
(Moler and Loan, 1978) discuss “nineteen dubious ways” to compute the matrix exponential.
However, the uniformization method we use in this paper, despite being introduced much
earlier by Jensen (1953) was not included. (Moler and Loan, 1978) considered methods for
computing exp(A), the exponential of a general matrix A. Uniformization is tailored for
the special case of computing the exponential of a generator matrix @ of a continuous time
Markov chain. This distinction is important and, as it turns out, uniformization is especially
effective in the even more special case where we need to calculate the action of the matrix
exponential on a probability vector v, such as exp(AQ)v. In particular, it will be easy to

exploit sparsity in this situation, which is a central feature of the models we consider in this

paper.

2.2. Example: A Single-Agent Renewal Model

Here we introduce a continuous-time single-agent renewal model. Inspired by Rust (1987),
we consider the decision-making process of a bus company manager. The manager faces a
choice between replacing a bus engine and continuing with the existing one. This scenario
is modeled using a state variable representing the accumulated mileage of the bus engine,
expressed as k in a discrete set £ = {1,..., K}.

The decisions of the manager (player ¢ = 1) are binary. The manager may continue

10



without replacement (j = 0), after which the state remains unchanged, or replace the engine
(j = 1), after which the mileage resets to the initial state k = 1.

The transitions for these decisions are represented by the function:

koifj=0,
1 ifj=1.

1(i,j, k) =

The hazard rate for replacing the engine in state k is denoted by hyx, while the non-
replacement decision rate hg, complements it to maintain a constant overall decision rate A,
such that hor = A — hqg.

The mileage accrues according to a simple transition process, with a rate parameter
v governing the increase to the next mileage state (one state ahead). If we let Qo = (qx;)
denote the intensity matrix for nature (player i = 0), where the elements are gy, then this

can be represented as:

—y ifl=k,
qrl = 7y ifl=Fk+1,
0

otherwise.

The operating cost for a bus with mileage k is Sk, where [ is a negative constant reflecting
the cost per mileage unit. Upon deciding to continue, no immediate cost is incurred, but
engine replacement entails a fixed cost pu.

The value function Vj in this model can be expressed recursively as

Vi (ur +YVi1 + AEmax {eo, + Vi, —p0 + 1 + V1}),

A
where p is the discount rate, and €;;; denotes iid shocks received following choice j.

The dynamics of the model are described by the aggregate intensity matrix @), which is
the sum of two matrices: @g, representing nature-induced transitions, and )1, representing
agent-induced transitions.

To make things concrete, let us consider a simple example with K = 5 mileage states.

The matrix (g, which represents the mileage transition due to natural increase, is structured

11



as follows for K = 5:

[—v v 0 0 0]
0 —v ~ 0
() Q=10 0 — ~ 0
0 0 0 —v 7
L0 0 0 0 o0

Here, ~ represents the rate at which the mileage of a bus increases by exactly one unit.
The diagonal elements are negative (indicating the rate of leaving the current state), and
the immediately off-diagonal elements are positive, indicating the probability of moving to
the next higher mileage state. The last row has zeros because it is assumed there are no
further mileage increases beyond state 5 in this model setup.

The matrix 1, which represents transitions induced by the agent’s decision to replace

the bus engine, is

0 0 0
)\0‘12 —)\0'12 e 0
(8) Ql == )
ANO1K 0 co. —AOIK

where o1 denotes the probability of choosing to replace the engine in state k. Each non-zero
element in )1 represents a rate of making a decision to replace the engine, resetting the
mileage to 1, from any given state k.

Adding Qg and @)1 together, we obtain the aggregate matrix @ for K = 5:

—y ol 0 0 0
Aoz —Aoi2 — 7 v 0 0
9) Q= |Xo13 0 —Ao13 — g 0
Ao14 0 0 —Ao14 — v
| A\o15 0 0 0 —Ao15]

The aggregate matrix () is clearly sparse for several reasons. Most transitions occur
between adjacent states (due to natural increase) or reset to the initial state (due to
replacement). There are no transitions to non-adjacent states except for those induced by
replacements, which only affect the first column. Many elements of () are zero because
transitions between non-adjacent states are not possible, except through replacements leading
back to state 1.

This sparsity is beneficial because it means that in computations one can skip over

12



the zero elements and focus on the non-zero elements. This reduces the complexity of
matrix operations, leading to faster computational times and lower memory usage, especially

important in larger systems.

2.3. Uniformization of a Continuous Time Markov Chain

Uniformization (Jensen, 1953), also known as randomization, is a long-used technique in
the study of continuous time Markov chains, with applications to areas such as queuing
theory, operations research, and epidemiology.’ Recall that a continuous time Markov chain
on a finite state space is characterized by transitions between states that occur continuously
over time, with the time between transitions following an exponential distribution. The
transition rates between states are described by a generator matrix (). A discrete time
Markov chain involves transitions between states at discrete time steps, with transition
probabilities described by a matrix P.

Uniformization provides a straightforward way to convert a continuous time Markov chain,
with potentially varying exit rates, into a comparable discrete time Markov chain subordinate
to a Poisson process. Transitions of the discrete time process are not uniformly spaced,
rather they are determined by the hitting times of the Poisson process. The rate parameter n
of the Poisson process is determined by the highest exit rate of the continuous time process,
ensuring that 7 is sufficient to capture all possible transitions in the continuous-time Markov
chain.

A key aspect of the discrete-time Markov chain is the introduction of self-transitions,
which permit the process to remain in its current state with a non-zero probability. This
modification is necessary to preserve the overall transition rates of the original continuous
time Markov chain.

Uniformization involves the following steps:

1. Select a uniform rate n: Choose 7 larger than the absolute values of the generator

matrix Q)’s diagonal elements:

n> kEIIIaXK ‘Qkk’ .

Ay

This rate equalizes transition rates across states, which can be viewed as following a

Poisson process with rate 7.

!Other early contributions on uniformization include Grassmann (1977a,b) and Reibman and Trivedi
(1988). See (see e.g., Puterman, 2005, Ch. 11) and van Dijk, van Brummelen, and Boucherie (2018) for more
recent overviews.
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2. Construct the transition probability matrix 3: Formulate ¥ using n and Q:

s-1+2

Ui

> contains the probabilities of state transitions at each arrival of the Poisson process.

With this uniform representation, we can view potential transitions within the original
continuous time Markov chain as being governed by the Poisson process’s jump times
with rate n. At every jump, the system may shift between states following the transition
probabilities in ¥, which includes possible self-transitions.

This approach is particularly useful for computing transient state probabilities for
continuous-time Markov chains as well as the transition probabilities which appear in the
log likelihood function of such models in settings with discrete time data. The probability of

transitioning from state k to state [ in time A is given by

(nA)!
;!

(10) pr(A)=e 2 i (5w,

J=0

where the sum iteratively calculates the probabilities of transitioning from state k to state [
in exactly j jumps. Here, [¥7];; is probability of making such a transition after j jumps.
Each term of the series is weighted by the Poisson probability of exactly j arrivals within

the interval A, as determined by a Poisson process with rate nA.

Example 1 (Two-State Model). Consider a simple continuous time Markov chain with two

states, represented by the infinitesimal generator matrix

Q:(;<i>

Here « is the rate of transitioning from state 1 to state 2 and  is the rate of transitioning
from state 2 to state 1. This process is represented in the top panel of Figure 1.

To apply uniformization, we first choose a uniform rate n > max {a, 8}, ensuring it
covers the highest transition rate in Q. With 7 selected, we construct the uniform transition

probability matrix ¥ as follows:

[0} (07
Q 1;5 "
n g 1-¢

This process is represented in the bottom panel of Figure 1. The off-diagonal entries, % and

%, are the adjusted probabilities of transitioning between states 1 and 2 under the uniform
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Continuous-time Markov chain @

o
B
(o3
n
e 8
1 0 1_5
B8
n

Discrete-time Markov chain X
subordinate to a Poisson process with rate n

FiGURE 1. Example of Uniformization

rate 7. Because transitions occur at rate 7, the overall rates of transitioning between the
two states remains unchanged. The diagonal entries of ¥, 1 — % and 1 — %, represent the
probabilities of self-transitions for states 1 and 2, respectively, ensuring that X is a proper
row-stochastic matrix. This transformation leverages a Poisson process to maintain the
stochastic behavior of the continuous-time process in a discrete-time framework, simplifying

analysis and computation while preserving the essential dynamics of the original process.

2.4. Uniformization of the Single Agent Renewal Model

Consider the continuous time Markov chain with five states from the example single agent
renewal model with @ matrix given by (9). The dynamics of this model are characterized
by exogenous mileage increments that occur at rate v and decisions to reset the mileage by
replacing the bus engine at rate Aoy in any given state k.

To apply the uniformization technique, we select a uniform rate n > Amaxy o1 + 7,
ensuring it surpasses the highest rate in ). We note that since the o1 for k =1,..., K are
probabilities that are strictly bounded between 0 and 1 under Assumption 7, it suffices to

choose

n=A+7,
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equal to the rate of player moves plus the rate of state changes by nature. With 7 selected,

the uniform transition probability matrix > is constructed as follows:

S X ]

1A 1 P 0 0 0
g12 g12T7Y i

Q n 1 n U 0 0
D=l+o= A% 0 1— Aoty 1 0
Aoig _ Aguaty ol
N 0 0 1 — 20w |

AT15 _ Ad15

B 0 0 0 1— 2|

This model is represented in Figure 2, where the top panel depicts the original continuous-
time Markov chain and the bottom panel illustrates the discrete-time Markov chain trans-
formed via uniformization. The off-diagonal entries of 3 are the adjusted probabilities of
transitioning between states under the uniform rate 7, while the diagonal entries represent
the probabilities of self-transitions, ensuring ¥ is a proper stochastic matrix. This transfor-
mation simplifies computation and analysis while maintaining the dynamics of the original

process.

3. Computing the Value Function

3.1. Value Iteration

We begin by first establishing some properties of the Bellman optimality operator T;
defined in (4) above. In particular, we show that holding beliefs fixed, the operator is a

contraction mapping with respect to the supremum norm.

Theorem 1 (Value Iteration). Suppose Assumptions 1-7 hold. Then for any firm i, for
fized beliefs <;, the Bellman optimality operator T; , defined in (4) is a contraction mapping

with respect to the supremum norm with modulus

n
1) 8. = :
1 5 pi+1

where

(12) 7= Z)\m + mkaXZqul and 1= Z Am + mkianOkl.
m 1%k m 14k

k) _ 0 . . . 0
Let Vi( ) = Tzkgz VZ-( ) denote the k-th step of value iteration for any initial guess V;( ) ¢ RK
Then, limy_, o Vi(k) = V/,. Furthermore, for all k,

|

V;(O) e

S| 00

V;(k) - VZCZ

k
. <8
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Discrete-time Markov chain ¥ subordinate
to a Poisson process with rate n

F1cURE 2. Example of Uniformization for the Single Agent Renewal Model
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and so the rate of convergence of Vi(k) to the unique fized point V.. is Op(ﬁf).

The proof of this theorem, and all remaining results, is given in Appendix A.
In games with multiple agents, the beliefs ¢; represent the strategies of the other agents
o_;. The theorem covers single agent models as a special case, where the beliefs ¢; are not

necessary as there are no rival players to consider.

3.2. Uniform Representation of the Value Function

Next, we establish a novel “uniform” representation of the value function. Although the
representation is based on the CCP inversion result of Hotz and Miller (1993) as applied to
the continuous time setting by Arcidiacono, Bayer, Blevins, and Ellickson (2016), it is a new
representation based on the method of uniformization described above in Section 2.3. First,

the following Lemma establishes that 77 in (13) is a valid uniformization rate for the model.

Lemma 1. Suppose Assumptions 1-7 hold in the general dynamic discrete choice model.
Then 7 defined in (12) is a valid uniformization rate for the continuous time Markov chain

defined by the aggregate intensity matriz () for the model. That is,

(13) 7> max |lqk]

where qgi is the (k, k) diagonal element of Q.

Next, Theorem 2 establishes the new uniform representation of V;. The representation
defines a linear operator in terms of equilibrium choice probabilities ¢ and, as uniformiza-
tion produces a discrete time Markov chain, the representation allows us to draw direct

comparisons to discrete time dynamic discrete choice models.

Theorem 2. Suppose Assumptions 1-7 hold. For equilibrium choice probabilities o, con-
sisting of equilibrium beliefs ¢; = o_; and an equilibrium best response policy o;, the value
function V; of the model has a representation in terms of a uniform Bellman policy operator

as:

(14) Vi =T;,V; = Ui(o) + B;X(0)V;

where

(15) Ui(o) = it T [ui + NiCi(o)],
Z_ 1N

16 F=—-
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with C;(o) denoting the K x1 vector containing the ez-ante expected value of the instantaneous
payoff cijr = Vijr + €iji for each state k given the choice probabilities o. The rate 7 is given

in Lemma 1.

In the representation of Theorem 2, we can see that U;(o) plays the effective role of the
flow utility. It combines the actual flow utility with the rate-weighted expected instantaneous
payoff at the agent’s next decision time. The effective discount factor is 3;, which depends
on the hazards of exogenous and endogenous state changes that determine 7, relative to
the discount rate p;. Under Assumptions 2 and 3, j3; is strictly bounded between 0 and 1.
Finally, note that due to uniformization the matrix ¥(o) is a stochastic matrix. It becomes
the effective transition matrix in this representation.

The vector Cj(o) is easy to compute in practice. It is a k-vector such that the k-th
element equals E;-]:_OI gijk [Vijk + €ijr(0)], where e;;;(0) is the expected value of ¢;;;, given

that action j is chosen:

1 .
(17) eyr(o) = - /5ijk'1 {%"k — €ijk < Vijk — Yijk + Vig k) — Vig,gm VJ'} f(eir) deig.

While (17) involves a multivariate integral over the joint distribution of €;,, Aguirregabiria
and Mira (2002, 2007) showed that there exist closed-form expressions for the integral for

two commonly used error distributions.

1. In the case where the errors ¢, are independently and identically distributed according
to the type 1 extreme value distribution with a scale parameter o., the expression

simplifies to
eijk(0) = yEM — 0 In oy
where ypm & 0.577215665 is the Euler-Mascheroni constant.
2. In a binary choice model with J = 2 and ¢;;, ~ N(0,€2), we have

eiin(0) = Var(e;jx) — Cov(giok, gik) @ (27 (0u4jk))
ijk v/ Var(gi1k — €iok) Tiijk

Y

where ® and ¢ are the standard normal cumulative distribution function and probability

density function, respectively.

The value function for a fixed equilibrium beliefs ¢; = o_; and best response policy o; is
the unique fixed point to the uniform Bellman policy operator defined in (14). Given the
uniform representation in (14), the theorem also establishes that the modulus of contraction

for policy evaluation using 7T}, to find V;, is 3;.
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Importantly, this uniform representation of the value function is not just about converting
the continuous time model into a discrete time counterpart. The uniform discrete time
Markov chain represents instantaneous transitions and remains sparse like the original
continuous time model. This is in contrast to a discrete time representation over a time
interval A, or a standard simultaneous-move discrete time model (with period length A = 1),
in which the transition matrix would become more dense.

Finally, although the present model is different than the model of Doraszelski and Judd

(2012), in Appendix B we also show how to apply uniformization in their framework.

3.8. A Single Agent Model

In Section 2.4, we showed how to apply uniformization to the aggregate intensity matrix
of a simple single agent renewal model. We will return to this idea later, in the context of
estimating the model with discrete time data, where we will need to calculate the matrix
exponential, for example, following the algorithms we introduce later in Section 4.

Here, we illustrate uniformization in terms of the value function for the model. This
allows us to focus on the case of a single agent ¢ = 1 and nature ¢ = 0. In addition, we
will derive the representation in a different way to add intuition. Rather than deriving the
uniform representation of the full ) matrix, as in the proof of Theorem 2, we will first
apply uniformization to each individual @); matrix: Qo then Q1. As before, let Q¢ be the
intensity matrix for exogenous state changes due to nature. For 7y > maxy, |gxr|, we have
the uniform representation g = I + 77iOQO or Qo = np (X0 — I), where Xy is the transition
matrix induced by the intensity matrix (9 when events by nature occur at rate 79 and we
allow self-transitions. We note that 11 = A1 serves as a uniform rate for ();. For the value
function V' and utility function u, we will drop the ¢ subscript for simplicity.

Then, we can express the Bellman operator for a policy ¢ in matrix form as:

15(V) {[u+mC(a)] + X0 +mE1(0)] V}

N p+ 1o +m
=U(o) + pE(0)V

where we define

Ulc) = ———[u+mC(o)],
()= o [ mC(o)
8= o + M . and
p+no+m
70 m
Yi(o) = Yo+ Yq(o).
(@) o +m 0 o + M 1(0)

We can see that we have arrived at the same representation as in Theorem 2. To
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reach this result, we first defined ¥ as the discrete-time transition matrix in a uniform
representation of the continuous time process for nature determined by Q. Similarly, due
to the model assumptions of a common 77; determining decision times for the agent, and the
assumption that the choice set contains a continuation choice 7 = 0, the implied transition
matrix at decision times ¥ (o) is itself also a discrete time transition matrix resulting from
uniformization of the intensity matrix @1 (o) associated with the agent’s decision problem.

The combined effective transition matrix is X, which is a weighted sum of ¥g, relating
to exogenous transitions due to nature, and X1(0), the endogenous transitions induced by
actions of the agent. The weights on the individual matrices are non-negative and sum to
one and therefore can be interpreted as conditional probabilities (i.e., the probability that

the next event is an exogenous or endogenous state change).

3.4. Newton-Kantorovich Iteration

The idea behind the Newton-Kantorovich method is to solve for the value function V by
iteratively solving the system of equations V' = T'(V'). This method is a central part of the
NFXP method of Rust (1987) for single agent dynamic discrete choice models in discrete time.
In our setting, we could use the same approach either for value iteration for a single agent
model or to solve for equilibria locally, either for multiple starting values or for pre-estimated
choice probabilities. Generally, the ideas is to restate the problem as one of iteratively

solving for a zero of the operator (I — T). Given V*), the Newton-Kantorovich iteration is
(18) v+ —y® _ 1] (1 —T)vk

where T" denotes the Fréchet derivative of the operator T'.

The Newton-Kantorovich method converges quadratically when the initial guess is
sufficiently close to the true solution. Therefore, as in Rust (1987), we can use value iteration
(contraction iterations) initially until we get within a sufficiently small neighborhood of the
solution and then switch to Newton-Kantorovich iterations. This poly-algorithm formed the
basis of the NFXP method. It can be used here, for example, to find a unique solution for

V for single agent models, or a unique solution for V; in a game for fixed beliefs g;.

3.5. Relative Value Iteration

In this section we establish strong convergence results similar to Bray (2019) but in the case
continuous time models. The representation derived above by uniformization in (14) maps
directly into Bray (2019)’s framework. As such, when the stochastic process induced by
%(0) is ergodic, relative differences in the value function converge at the rate 3;v2. Here,

2 is bounded below by the second-largest eigenvalue of ¥(o), with this eigenvalue being
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strictly smaller than one, therefore 3,72 < 3;. The following theorem formalizes this.

Theorem 3 (Relative Value Iteration). Suppose Assumptions 1-7 hold and let o denote a
profile of equilibrium choice probabilities. Let (o) denote the stochastic transition matriz
derived from the uniformization process, as described in Theorem 2, and let 3; be the effective
discount factor. If (o) is ergodic, then the relative policy evaluation for computing the
value function V; converges geometrically at a rate given by:

VO

i 1,0

V(k) . Vi

1,0

< (Biv2)*

o0 [e.9]

where 7o is the second-largest eigenvalue of (o), and V', is the true value function associated

with the equilibrium policies o.

4. Computing the Log Likelihood Function and its First Derivatives

We can consider two scenarios for estimation: continuous time data and discrete time data.
We will primarily consider the discrete time case, as it is the most difficult. In this setting,
the researcher only observes snapshots of a cross-section of markets at regularly-spaced time
intervals of length A > 0. Let M denote the number of markets and N, the number of

snapshots over time observed in market m = 1,..., M. The sample can be represented as

(kom0 - - ki Now Yot -
Let P(A,8) = exp (AQ(0)) denote the transition matrix over the interval A and let P(A, 6),
denote the (k,l) element of the transition matrix. Let
M Np
dkl = Z Z 1 {km,n—l = ku km,n = l}

m=1n=1

denote the number of observed transitions from state k£ to [.
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The log likelihood function is

M Np
=1In H H P A’Q)kzm,n_l,km,n
m=1n=1
K K
= [[[IP (A, 0)
k=11=1

-
M =

In P (A, 0)%

e
Il
—
-
I
—

-
W

)

k=11=1
K
(19) = di[ImP(A,0)]e
=1
where d; = [dyy,...,d;] and e is the I-th basis vector. In practice, we only need to sum

over states [ where d; > 0, so evaluating the log likelihood function may involve calculating

relatively few columns of P(A,6).

4.1. Uniformization and the Matriz Exponential

Choose 1 > maxy=1,__ x |Qrk|, ¥ = Q/n + I, so that AQ = nAYX —nAl.

By properties of the matrix exponential, we note that

exp(AQ) = exp (nAY — nAl)
= exp (nAX) exp (—nAl)
= exp (nAZ) e AT
nAx).

= exp (
(20) — ean i (77 )JZJ
j=0

g

Importantly, all elements of 3 are positive, meaning that this calculation will not suffer from
cancellation of alternating positive and negative terms (Goldberg, 1991; Sherlock, 2022). As
a result, computations will be much more numerically stable for the uniformization of a rate
matrix ) than for the exponential of a generic matrix A.

In many cases, we merely need to calculate the action of the matrix exponential on a
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probability vector v:

exp(AQ)v = exp (NAX — nAl)v
= exp (nAX) exp (—nAl)v
= exp (nAZ) e " v
= e " exp (nAZ) v.

(nA
(21) = i (" ]E]“

Notice that we can compute (21) in a recursive manner as

exp(AQ)v = 718 Z (nA) = =N f: vj
=0 J! j=0
Vg =0
nAY
I/j = j Z/J 1-

In practice, we need to truncate the infinite series at some finite J. such that the

approximation error is smaller than a given tolerance e:

AJZJU — (nA)¥v JEJU

—”IA Z
‘7 j=Je+1 ‘7

exp(AQ)v =718 Z (1

The truncation introduces approximation error, which must be managed to ensure the
resultant probabilities are accurate. Given the nature of the uniform representation with
a Poisson process to regularize the intervals between state transitions, we can determine
the truncation point, J., using the tail probabilities of a Poisson distribution (Fox and
Glynn, 1988; Reibman and Trivedi, 1988). Importantly, /v can be interpreted as the state
distribution after j steps in the DTMC, given an an initial distribution v. Therefore each
term of the series is itself a probability vector with ||Ej U||1 = 1. This simplifies calculation
of the truncation point since the norm of the second term, representing the amount of
probability mass lost due to truncation, can be bounded by e by choosing J. to be the

smallest integer such that

.

j= Js+1

= 1 — PoissonCDF(J.;nA) < ¢,

where PoissonCDF(j;7A) is the cumulative distribution function of a Poisson distribution
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with rate nA evaluated at j. Conveniently, the truncation point J, is deterministic and can

be calculated in advance as
J. = PoissonCDF (1 — £;7A).

The basic uniformization algorithm for computation of exp(AQ)v is presented in pseudocode

form as Algorithm 1.

Algorithm 1 Uniformization Algorithm for Matrix Exponential

Require: ) (rate matrix), A (time), v (initial probability vector), € (tolerance)
Ensure: p (resulting probability vector exp(AQ)v)
1: function EXpPMV(Q, A, v,¢)
2: n < max(abs(diag(Q))) + ¢
¥ AQ 4 nAl > Note that ¥ = nAX.
J. < poissinv(1 — &, nA)
v
)
for j < 1to J. do
v Suv/j
w—pu+v
10: end for
11: i exp(—nA)u
12: return u
13: end function

Sherlock (2022) discusses two important details regarding this algorithm. First, he
introduces a method for accurately calculating the required tail probabilities for small

values. Second, he modifies the uniformization algorithm with an adjustment term to account
(AA)7
gt

for possible overflow in the calculation of Z}I:O

4.2. Simultaneous Computation of First Derivatives

To use a gradient-based optimization method to estimate the model, we also need to take the
derivative of the log likelihood function with respect to the model parameters 6, %. Note
that the aggregate intensity matrix () in our model is a function of the model primitives—the
rates of exogenous state changes and the implied hazards of the various endogenous actions
that can be taken by the agents in the model. These are in turn functions of the model
parameters 6. We shall write the matrix as Q(6) to emphasize this. Since @ = Q(0) the

derivative % is a tensor. Therefore, for clarity we focus derivatives with respect to a single
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scalar component « of 8, which we will denote by %. By the chain rule, we have

ov

K
S = Y duInP(A,0),,
(0%

11=1

™=

T

0

I
M= 2l
Nk

k=11=1
K K
d oP (A, )
e ) B N
k=11=1 VU kL
(23)

Thus, we also need to compute 8Pé§’0).

From (20), we have

(24 8P((929 _ g (A

7=0

(nA) 9%
jl B

Suppose we can calculate g% analytically. Then we can calculate % recursively by
noting that 37 = ¥37~! and therefore, by the product rule,
[5)Y )Y

. o¥i—1
e Al
(25) B Baz + X 9o

As before, when we only need the action of w on a vector v,

OP(A0) A
(26) e v=e ;} i

(nA) (32]
804

then this will again be computationally simpler. Note that from (25), we have the following

recurrence:
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Substituting (27) into (26), we obtain

N N
S [@AV IS, (A o
¢ Jz:% TR S TR o

OP(A,6)
Oa v

= | nA oL  (nA)y—l_ A A)i—1 gyi-1
nAOY  (AY oy nAg  (AY 0

7 9a (-1 ; G—1)! da
—_—

=Vj-1 =051

(s 2 [az

= ——Vj_1+ 201
—~ j O«
7=0
oo
—nA
=e 10> 55,
3=0

where the last line follows from (27) and we can calculate v; and 6§; recursively as follows:

1/0:(50:1),

A
vj = %Zyj,l for j=1,2,...

nA [0% .
0j=— |=—vi_1+20;_1| for j=1,2,....
j 7 9" 1 j—1 J
Remark. In recursions involving sparse matrix products, matrices stored can be subject to
fill-in, increasing the storage required substantially. Importantly, for both v; and ¢; we only
need to store K x 1 vectors. The only matrices stored are the sparse matrices ¥ and g%.

Fach iteration of the recursion only involves three sparse matrix-vector products.

Remark. Note that the term v; is also used for computing exp(AQ)v, so there is a benefit

to computing the matrix exponential times v and its derivatives simultaneously.

Remark. When 6 contains multiple parameters, we can compute the derivatives simultane-
ously in the same loop simply by storing separate vectors ¢;, for each component «. The

term v; is independent of .

5. Sparse Matrices, Precomputed Addresses, and Parallelization

Sparse matrices are matrices in which most of the elements are zero. Storing and operating
on sparse matrices efficiently can be beneficial in models such as ours where sparsity naturally
occurs in the value function representation and the rate matrix Q.

There are several common storage formats for sparse matrices that allow efficient storage

and computations. These include coordinate (COO) format, compressed sparse row (CSR)
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Algorithm 2 Uniformization Algorithm for Matrix Exponential and Derivatives

Require: Q) (rate matrix), D, = g% (derivative), A (time), v (initial probability vector), e
(tolerance)
Ensure: p (result of exp(AQ)v), po (result of %ﬁf@v)
1: function EXPMVD(Q, D, A, v, ¢)

22 1+ max(abs(diag(Q))) +¢

3 Y AQ+nAl > Note that ¥ = nAX.
4: l:)a +— nAD, > Note that [)a = UA% = Ag—g.
5: Je < poissinv(l — e,nA)

6: V< v

T nv

8: S+

9: Pa < Orx1

10: for j < 1to J. do

11: v Sv/j

12: n—p+v

13: 6 < (Dav +X0)/j

14: Lo < fha + 6

15: end for

16: < exp(—nA) x p
17: o — exp(—nA) X fig
18: return u, i

19: end function
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format, and compressed sparse column (CSC) format. These are perhaps best explained
through a simple example.
Consider again the () matrix from the single agent renewal example in (9) with K =5

states, with specific values for the parameters:

— v 0 0 0 [—0.2 0.2 0
Ao12 —Ao12 — 7y 0% 0 0 0.1 -03 0.2 0
Q= |)o3 0 —\o13 — 7y v 0 |=]04 0 —06 02 0
Ao14 0 0 Aoy —7v 06 0 0 -0.8 0.2
PYsE 0 0 0 ~Xois]  [09 0 0 0 —0.9)

Note that this matrix has 25 elements, but only 13 nonzero values to store. For matrices
this small, because we will also have to store the row and column locations, sparse matrix
storage is not more efficient. However, for larger matrices, the savings can be substantial.
For the model with K = 100 states, there are K x K = 100 x 100 = 10,000 elements in the
matrix but only 3 x 100 — 2 = 298 nonzero elements. Using sparse matrix methods will
have a significant impact on both storage (i.e., required to hold the matrix in memory) and
computation (e.g., the number of operations required to multiply the matrix by a vector).
Computational savings occur because only the relatively small number of nonzero elements
of the matrix are involved in any given computation.

The COO format represents a sparse matrix by storing lists of the row indices, column
indices, and corresponding nonzero values. In this format, each of the arrays has the same
length, equal to the number of nonzeros in the matrix. The COO representation of the

example () matrix is shown in Figure 3.

Values —0.2 | 0.2 0.1 [ —-0.3] 0.2 04 | -06]| 0.2 0.6 | —0.8| 0.2 09 | -09
Row

) 1 1 2 2 2 3 3 3 4 4 4 5 5
Indices

Column |4\ o | ¢ 1 o | 3 | 1 | 3| 4| 1] a5 ]| 1]s
Indices

FIGURE 3. Sparse () Matrix in COO format

The COO format is straightforward, listing each non-zero element of the matrix by its row
and column indices along with the corresponding value. This format is particularly useful
for initially constructing sparse matrices due to its simplicity and direct way of mapping
matrix elements.

The COO format, offers straightforward indexing capabilities. This format allows direct
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access to any non-zero element along with its position, making it ideal for applications that
require frequent insertion, deletion, or modification of elements where knowing the exact
position is crucial. COO format does not inherently optimize row or column access but
provides equal facility for accessing data in any order, which is beneficial for random access
and indexing.

The CSR format stores the values of each row of the matrix, the column indices of those
values, and a separate array of pointers to indicate the index in the value array of where

each row begins. The CSC representation of the example @ is illustrated in Figure 4.

Values —-0.2] 0.2 0.1 | -03| 02 | 04 |—-06] 0.2 0.6 | -08] 0.2 | 09 |-0.9

Column |, 2 1 2 | 3 1 3 | 4 1| 4| 5 1 5
Indices

Row 1 3 6 9 12 | 14
Pointers

FIGURE 4. Sparse () Matrix in CSR Format

CSC format is similar to CSC format, but stores the values of the matrix in column
order, along with the row indices of the values. There is a separate array of column pointers
indicating the index in the value array where each column begins. The example () matrix

can be stored in CSC format as illustrated in Figure 5.

Values | —0.2] 0.1 | 04 | 06 | 09 | 02 |-03| 02 |06 02 | —0.8] 02 |—0.9
Row 1 2 | 3| 4| 5 1 2 | 2| 3| 3| a]| 4]s
Indices

Column 1 6 8 10 | 12 | 14
Pointers

FIGURE 5. Sparse (Q Matrix in CSC Format

The choice of storage format impacts both storage efficiency and ease of operations like
matrix-vector products. CSC format is preferable for vector-matrix multiplication (where
the vector is multiplied on the left of the matrix as in v'Q), since the operation involves
accumulating contributions from columns of the matrix @ scaled by corresponding elements

of v. The CSC format stores data by columns, which makes it efficient for accessing all
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elements of a particular column sequentially. Likewise, CSR format is faster for matrix-vector
multiplication due to the values being stored row-wise. Finally, COO format is generally
fastest for indexing—looking up values at specific locations—since it allows direct access to
any non-zero element along with its position. COO format is ideal for applications that
require frequent insertion, deletion, or modification of elements where knowing the exact
position is crucial.

Therefore, it is important to understand the implementation details of your sparse matrix
library to understand which operations may be faster, allowing you to potentially reorganize
your programs or data structures accordingly. MATLAB, for instance, uses the CSC format
internally Gilbert, Moler, and Schreiber (1992). If your sparse matrix library uses the CSC
format and you are, say, implementing the log likelihood function using the sparse matrix
exponential algorithm, you may wish to arrange the computation as v’ exp(AQ) if possible—
which involves vector-matrix products in the Taylor series—instead of exp(AQ)v—which
involves a series of matrix-vector products.

Finally, we note that switching formats is possible and may be advantageous for certain
operations. For instance, you may want to construct the initial sparse matrix in COO format

and then convert to CSR format for subsequent matrix-vector multiplications.

5.1. Computing Q

In large-scale models involving multiple players, computational efficiency can significantly
impact both performance and feasibility. One of the critical strategies we employ involves the
use of sparse matrices with precomputed addresses of nonzero elements. These techniques
are exceptionally beneficial in dynamic discrete choice games, where the locations of state
transitions—stemming from player actions and natural state changes—can be calculated in
advance and retained for subsequent computations.

Sparse matrices primarily store non-zero elements, optimizing both storage space and
computation time. In our approach, we initially construct a sparse matrix ¢ in COO
(coordinate) format. This format is particularly advantageous for constructing the matrix
as it allows direct placement of the elements (see Figure 3). For instance, in an entry-exit
model, each state’s transitions resulting from firms’ entry and exit decisions, as well as
changes induced by nature, are considered. For each potential transition, we record the
corresponding row and column indices that connect the current state to the future state.

Precomputing the locations of these non-zero entries represents a significant optimization.
By establishing the sparsity pattern of the matrix—which delineates where the non-zero
entries are located—we ensure that this structural blueprint can be reused. This reuse is
viable as long as the underlying structure of the matrix remains unchanged, even if the

structural parameters of the model, and consequently the values within the matrix, do
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change. As a result, the computational overhead associated with reassessing the matrix
structure each time the model is updated is substantially reduced. The algorithm simply
updates the values at these pre-established locations without recalibrating the entire matrix
layout.

After constructing the matrix in COO format, we convert it to CSR (compressed sparse
row) format. This transformation is designed to enhance the efficiency of subsequent
computations, particularly those involving matrix-vector multiplications, which are prevalent
in iterative methods used for computing value functions and updating choice probabilities.

When the model parameters are updated, updates to the sparse (Q matrix are confined
to the value array. The precomputed column index and row pointer arrays (see Figure 4)
remain constant, as the sparsity pattern of the matrix, indicating the possible transitions,
does not change. This method is more efficient because it circumvents the computationally
expensive task of recalculating the transition matrix structure with each alteration in model

parameters.

5.2. Computing V;

Once we have a convenient sparse matrix representation of the intensity matrix @, the
vectorized representation of the value function V; allows for efficient computation of both
value iteration and Newton-Kantorovich iteration using sparse matrix operations.

In value iteration, for example in (14), the predominant computation is a sparse matrix-
vector product 3(o)V;, where the sparse matrix (o), which is related to @, represents the
transition probabilities between states, and the dense vector V; represents the value function
for player ¢. The product represents the expected continuation value next period, given
the current state and transition probabilities. Sparse matrix-vector multiplication (SpMV)
operations are common computational kernels in these algorithms, optimized for leveraging
the non-zero structure of the matrix to minimize computational load and memory usage.

Similarly, in the Newton-Kantorovich iteration given by (18), the predominant computa-
tion involves solving a sparse linear system with a positive but (in general) non-symmetric
matrix (o). Since the conjugate-gradient (CG) method is only applicable to symmetric
positive-definite systems, it is not a viable option in this case. Two alternative approaches
are QR decomposition and GMRES. QR decomposition is a direct method that robustly
computes the solution in a finite number of operations, but calculating the decomposition
can be computationally expensive and memory-intensive for large systems. GMRES, on
the other hand, is an iterative method that computes successive approximations to the
solution. Since its convergence rate depends on factors like the matrix condition number
and eigenvalue distribution, the relative speed of QR vs GMRES is system-dependent.

By leveraging the sparsity of the matrices involved in these computations, significant
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computational savings can be achieved, enabling efficient solution of large-scale dynamic
programming problems. Next, we consider the computational aspects of implementing the

log-likelihood function.

5.3. Computing P(A,0) = exp(AQ(H))

The main computational challenge in evaluating the log likelihood function for estimation
is the evaluation of the matrix exponential P(A,0) = exp(AQ(#A)), where Q(#) is the
intensity matrix of the continuous-time Markov chain implied by the structural model. In
large-scale models with relatively smaller sample sizes, typically the dataset will contain
only observations on a subset of states. When we only need specific rows of the transition
matrix P(A,#), sparse matrix methods can be effectively utilized in the matrix exponential
algorithm for computing P(A,0)v = exp(AQ(0))v described in Section 4.1. Since the
intensity matrix Q(#) is typically sparse, with non-zero entries only for transitions between
states that are directly connected in a single instant, we can use the methods discussed
in Section 5.1 to store and update the Q(#) matrix as we search over §. Thus, we can
more efficiently compute the transition probabilities compared to dense matrix exponential
methods, given the inherent sparsity of our model. Notice that the main computational
operation in Algorithms 1 and 2 are again sparse matrix-vector multiplications (SpMV).
Therefore, by leveraging sparse matrix methods, the matrix exponential algorithm can be

applied to large-scale continuous-time Markov chain models.

5.4. Opportunities for Parallelization

In our computational approach, there are several key opportunities for implementing vector-

ization and parallelization:

1. The value function updates can be parallelized across states, given that the update for
each stat k is independent of the others. This form of parallelization is particularly
useful in models with a large number of states, allowing for simultaneous updates
that drastically reduce computational time. Utilizing multi-threading or distributed
computing frameworks can facilitate this parallel processing, ensuring that each
processor or core is assigned a subset of the total states for which to compute value

updates.

2. SpMV-level parallelization: Sparse matrix-vector multiplications appear in operations
such as value iteration and computing matrix exponentials. Libraries such as Intel’s
Math Kernel Library (MKL) and NVIDIA’s CUDA offer highly optimized routines for
SpMV that exploit the hardware capabilities of CPUs and GPUs, respectively. These
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libraries implement advanced parallelization techniques that can significantly speed
up the computations by handling multiple operations concurrently across the sparse

matrix structure.

3. Optimization-level parallelization: The optimization routine used for estimating model
parameters 6 can be effectively parallelized across diverse starting points or regions
of the parameter space. This is especially useful in global optimization algorithms
that perform multiple local searches to escape local minima and find a more global
solution. By parallelizing these searches, the algorithm can explore various parts of
the parameter space simultaneously, enhancing the efficiency and robustness of the

optimization process.

The trade-offs between these approaches depend on the specific problem size, hardware
resources, and the relative computational costs of different components of the algorithm.
State-level parallelization may be more effective for problems with a large number of
states, while SpMV-level parallelization may be more effective if a highly optimized library
routine is available in your software package or programming language. Optimization-level
parallelization can be complementary to the other approaches and may be particularly useful

for global optimization routines.

6. Monte Carlo Experiments

The model for our Monte Carlo experiments is a simple dynamic entry-exit model among
N firms. The firms operate under stochastically varying market demand conditions. For
simplicity, firms are assumed to be symmetric and myopic. Therefore, the state space is
defined by the number of active firms and the current state of market demand. The market
demand is discretized into several states, allowing us to capture fluctuations in market
conditions that can influence firm behavior.

The state space of the model is constructed by considering all possible combinations of
firm states and demand levels. For N firms, this leads to a configuration space where each
firm can independently choose to enter (switch from inactive to active) or exit (switch from
active to inactive) the market. The number of possible configurations of firm states is N
reflecting all combinations of entry and exit across the firms.

Given D discrete demand states, the total number of states in our model is given by
K = 2N x D. Each state thus corresponds to a unique combination of firm activities and
a particular level of demand, allowing us to represent the complete system as a matrix of
transitions between these states.

The transition rates between states are governed by a set of parameters and the firms’

decisions, which are influenced by current market conditions and the firms’ entry status.
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The decision process for each firm is modeled as a logit probability where the probability of
being active in the market is a function of the state of the model.

Let the current state of the model be k and let [ = I(i,j = 1, k) be the state resulting
from the entry of firm ¢. Then the probability of entering for firm ¢ is given by: These

probabilities are defined as:

1
1+ exp(—(0pc + OrN X Nactive + Op X demand))

Pkl =

where Ogc is the entry cost, frn represents competitive effect from the number of currently
active firms (nactive), and 0p represents the profitability of the market level of demand
(demand).

The model’s dynamics are implemented through a continuous-time Markov process,
where each possible state transition is associated with a rate derived from the firms’ decision
probabilities. The transition matrix, (), is constructed as a sparse matrix due to the majority
of transitions being zero (i.e., many firm configurations do not directly transition between
each other). The sparsity of this matrix is leveraged computationally to enhance the efficiency
of operations such as matrix exponentiation, which is fundamental for calculating transition
probabilities over time.

This matrix exponentiation, exp(AQ), where A represents a time step, is computed using
a uniformization technique that is particularly suited for sparse matrices. This approach not
only facilitates the calculation of the matrix exponential but also allows for the simultaneous
computation of derivatives with respect to the parameters (6gc, Orn,Op, A,y), which are
essential for gradient-based optimization methods used in parameter estimation.

We first choose parameters for the model and simulate data. For estimation, we use
the observed data to fit the model parameters via Maximum Likelihood supported by the
derivatives of the likelihood function with respect to the model parameters.

For our Monte Carlo experiment, we specify N = 5 players, D = 5 demand states,
with 1,000 observations observed at discrete intervals of length A = 1.0. We carried out
101 Monte Carlo replications and report the mean, median, standard deviation, root mean
squared error, mean bias, and median bias of the estimates. We used L-BFGS-B to optimize
the log likelihood function for discrete time data given in (19). We make an initial pass over
each simulated dataset in order to pre-compute the transition counts dg;.

In Tables 1 and 2, we present the estimation results for the case where we use the analytical
Jacobian of the log likelihood function to estimate the model parameters. Specifically, Table 1
displays the results for small samples of 1,000 observations while the results in Table 2
are based on large samples of 4,000 observations. The Jacobian is given in (22) and the

derivative of the matrix exponential with respect to the structural parameters are computed
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following Algorithm 2. Computational times, in seconds, are reported along with the total
number of log likelihood function evaluations. We can see that although there is some
small finite sample bias in Table 1, it disappears in the large sample results in Table 2. By
comparing the RMSE values, we observe approximately the expected parametric rate of
convergence.

By comparison, we report results using numerical Jacobian estimates in Table 3. For
brevity, we only report the large sample results. We can see that, although in this simple
model, the numerical Jacobian estimates appear to be accurate, they are much more expensive
to calculate. The computational times are approximately 4 times longer on average when
calculating numerical derivatives and they require about 6 times as many function evaluations
on average. We expect that in more complex, dynamic models, the numerical Jacobian
estimates may be less accurate, providing another advantage to calculating analytical

derivatives using Algorithm 2.

Parameter True Value Mean Median S.D. RMSE Mean Bias Median Bias

Orc -0.500 -0.472  -0.466 0.119  0.122 0.028 0.034
OrN -0.060 -0.066  -0.062  0.049  0.051 -0.016 -0.012
Op 0.100  0.100 0.098  0.028  0.028 -0.000 -0.002
A 1.000  0.995 0.997 0.036  0.037 -0.005 -0.003
0 0.300 0.301 0.302  0.017  0.017 0.001 0.002
Time (s) 77.234  78.620 11.222

Func. Eval. 18.446  19.000  1.375

TABLE 1. Monte Carlo Results: Analytical Jacobian, 1,000 Obs.

Parameter True Value Mean Median S.D. RMSE Mean Bias Median Bias

fEC 0500 -0.504 -0.501 0.055  0.055 -0.004 -0.001
ORN -0.050 -0.050 -0.053 0.023 0.023 -0.000 -0.003
o 0.100 0.101  0.101  0.014 0.014 0.001 0.001
A 1.000 1.000  1.000 0.018  0.018 -0.000 -0.000
5 0.300 0.300  0.300 0.009  0.009 0.000 0.000
Time (s) 80.907 80.161 10.036

Func. Eval. 18.891  19.000  1.266

TABLE 2. Monte Carlo Results: Analytical Jacobian, 4,000 Obs.

7. Conclusion

This paper has presented computational strategies that enhance the efficiency and efficacy

of solving and estimating continuous-time dynamic discrete choice models. By integrating
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Parameter  True Value Mean Median S.D. RMSE Mean Bias Median Bias

Orc -0.500 -0.504  -0.501  0.055 0.055 -0.004 -0.001
OrN -0.050 -0.050 -0.053  0.023  0.023 -0.000 -0.003
fp 0.100 0.101 0.101  0.014 0.014 0.001 0.001
A 1.000 1.000 1.000 0.018 0.018 -0.000 -0.000
~y 0.300 0.300 0.300  0.009  0.009 0.000 0.000
Time (s) 314.706 312.590 39.642

Func. Eval. 113.287 114.000  7.518

TABLE 3. Monte Carlo Results: Numerical Jacobian, 4,000 Obs.

uniformization techniques and sparse matrix operations, we have streamlined the computation
of value functions and matrix exponentials in our setting and improved memory use. These
enhancements are crucial for handling large-scale dynamic models effectively.

Our Monte Carlo experiments illustrate the practical utility of these computational tech-
niques in a dynamic entry-exit model under varying market demand conditions. Specifically,
the use of analytical derivatives of the log likelihood function, compared to numerical deriva-
tives, significantly reduces computational demands. This advantage is particularly notable
in scenarios where only discrete-time data are available, which significantly complicates the
maximization of the log likelihood function relative to the case of continuous time data.

Moreover, we have established the contractivity and rate of convergence of value iteration,
policy evaluation, and relative value iteration. These findings are pertinent not only to
single-agent models but also to games with fixed beliefs, such as in the case of two-step
estimation with pre-estimated equilibrium choice probabilities. The computational techniques
described here are well-suited for modern computational architectures and can be enhanced by
parallelization, thereby increasing the speed and scalability of simulations. This advancement
opens new avenues in the field of empirical industrial organization, facilitating the exploration
of more complex models and deepening our understanding of strategic interactions and

policy impacts.
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A. Proofs
A.1. Proof of Theorem 1

Let V;, V! € RE denote two arbitrary value functions for player 4. Then, from (4) we have

||TZ,<1V; - Ti,cz'Vi/HOO
Ty Vik = Ta Vi

= sup
k

Wik + D 12g, Qokt Vit + 2omagi Am 205 Simgk Vi(m.jik) T A BEmax;{vijk + ik + Vi e}

= sup
K Pi+ D1k G0kl + D om Am

Wity + i Aokt Vit + Lints Am 2 Simgk Vilam gy T N Emax {digi + eigie + Vi ) ‘

Pi + 212k okl + 2 Am

= su
k

1
p au (Vi — Vi) + A Y SimikViaemoir — Viim.i
Pi D1tk Gt + Do Am (l;k ( ! gz ; #(Vitim3 dmak

tA {E max {%ﬂc + ek + V%,l(z‘,j,k)} — Bmax {%'k + €ijie + Vi g }D ’

1
< sup ar Vi = Vil + DA Simik
kPt 2k Wl + 2om Am (bézk Vi il g@ m Z]: imj

A max VidGigk) — Vitl(z’,j,kz)’)

itk Tl + 2 Am

< su Vi, — V7,

N kp pi+Zl¢quz+ZmAm| i = Vil
n /

< Vie, = V-

< pi+ﬂs%p| ik — Vil

=B, IVi- Vil

The first equality follows by definition of supremum norm, the second from (4), and the
third from collecting a common denominator, noting that u;; cancels out, and then collecting
terms. The first inequality follows from the triangle inequality and, for the final term, using
the fact that |supy f(k) — supy g(k)| < supy |f(k) — g(k)| for two functions f and g. We
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drop the expectation because the random variables €;;; cancel out after subtracting:

i [E max {wijk + €iji + Vi,l(i,j,k)} -E max {%a’k + ik + Vit H
<\ [E InJaX { (w”k + €ijk + Vi,l(i,j,k)) - (%k + €ijk + z‘l,l(i,j,k)) }]
<\ max {Vu(i,j,k) - Vz‘,,l(z',j,k)}

<\ Slép {Vzk - V;/k}

The last line here follows from max; f

Viitigk) — Vl,l(i,j,k‘)‘ < supy, |Vir — V|, since the choice
7 simply determines the continuation state and the same choice is applied to both value
functions. This leads us to the second inequality in the main derivation after noting that the
beliefs are each probabilities in [0, 1]. The final inequality follows from supy, |f(k)g(k)| <

supy, | f(k)| supy g(k) and supy, | f1(k)/ f2(k)| < supy, |f1(k)| /infy fo(k) and by definition of 7.
The last equality follows from the definition of 8, in (11).

A.2. Proof of Lemma 1

First, note that the aggregate  matrix has diagonal elements of the form

ik = — Z Am ng,j,l(m,j,k) - ZQOkl-

m=1,..N  j>0 14k

This follows from the first part of Assumption 6 and (1). Since the o, jl(m.j,k) are probabilities
that sum to one across choices, but here choice j = 0 is excluded, from Assumption 7 it
follows that 3=, Am > 32, Am 22550 Omoji(m.gk)- Adding maxg 37 qor to both sides and

comparing to the absolute value of qg; implies the result.

A.83. Proof of Theorem 2

Recall the Bellman equation from (4). Multiplying both sides by the sum of rates in the

denominator yields

pit D Qi+ Y Am

Vie = ikt Y aVat Y Am Y SimjkVii(m,jk) TN B m?X{¢ijk+8ijk+V%,z(i,j,k)}-
12k m ;

l#k m#i J

Collecting common terms yields a representation in terms of the instantaneous increment to

the value function:

piVik = ikt > art (Vi = Vi) + Y Am > Simjik (V;,Z(m,j,k) — Vzk) +A Emjf,ix{dfijk-i-&jk-i-‘/%,z(i,j,k)—Vik}-
17k m#L g
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First, recall that since the rows of ()¢ sum to zero, we have qi, = — Z#k qx1- Therefore,

K
> aw (Vi — = auVi— Y auVik = Y auVi + @k Vie = D _[Qolk Vi
12k 1k 12k 12k =1

which is the inner product of the k-th row of )y with the vector V.
Next, consider the term for rival firm m. Recall that the choice probabilities sum to one

across choices j and that choice j = 0 is a continuation choice such that I(m,0, k) = k:

Am Z Simjk ( il(mgk) — Vi ) = Am D SimjkVidtmik) + AmSim,0,kVik — AmVik

7>0
= Am D SimikVig(m,jk) = Am D SiminVik
7>0 >0
K
= [@mlxVi,
=1

which, in equilibrium, is equal to row k of the matrix (), multiplied by the vector V;.
Next, we show that we can write the expectation of the maximum term in terms of choice

probabilities, following Arcidiacono, Bayer, Blevins, and Ellickson (2016) and Aguirregabiria

and Mira (2002, 2007). Using the definition of C;(o) from the statement of the theorem,

note that we can write the final term, related to the agent’s own optimization, as
K
i Em?X{%Z)z‘jk + €ijk + Vi gk — Vie} = N[O Z Qilu Vit

Note that the second term is the product of the k-th row of @); with the vector V.
Combining these results, we note that we can write the vectorized form of the value

function as

piVi = ui + QoVi+ D> @mVi+ \iCi(o) + QiVi

Noting that Q = Qo + Z%:l Q.n, we can write the vectorized form of the value function

more simply as
(28) piVi =u; + NCi(o) + QV;.

Note that this is not a contraction. We can, however, now restate the equation so that it
is a vectorized version of (4), by subtracting the diagonal of Q Let Q = Q — diag (diag Q)
denote ) with the diagonal entries removed. Let D = diag ( e 1 ) denote the

i—q11’ ? Pi—qKK
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diagonal matrix whose elements are equal to the reciprocal of the discount factor, p;, plus

the sum of the exit rates from each state, —gxx. Then we have
Vi = D |u; + MCi(0) + QVi] .

Recall that uniformization involves adjusting the arrival rates by adding self-transitions
as necessary in each state k. The uniformization of @) is given by X =1 + %Q, where 7 is a
positive scalar such that 7 > maxy |Qgx|. As established in Lemma 1, 77 defined in (16) is a
valid uniform rate. Therefore, we may write @ =77 (X — I). To emphasize the dependence
of ¥ on the policies, through the @Q); matrices, we write it below as ¥(o).

Finally, to derive the stated uniform representation of V;, note that from (28) we can

write
piVi = ui + NiCi(o) + 7 (X(0) = 1) V;

and therefore,

1 _
V.= [uz + )\iCi(U)] + 1

pi +1M pi +1M
=Ui(o) + B;Z(0)V;

where we define U; and (3, as in the proposition.

B. Uniformization of Value Iteration in Doraszelski and Judd (2012)

Value iteration in Doraszelski and Judd (2012), starting from (12):

The value function is

, 1 , »
(29) Vi(w) = e () X ) 7 (X (), X7 (w),w)

o (X (@), X7 (w),w) By {0 (X (w), X7 (w),w,0) + V(W) | w, X' (@), X () }],

where 7 is the flow payoff, ¢ (X%(w), X %(w),w) is the rate at which the next state change
occurs, &' (X' (w), X (w),w,w’) is the instantaneous payoff that accrues when the state
changes, and E,, is the expectation with respect to the induced transition distribution. We
note that

1
p+ e (X'(w), X~H(w),w)

o (X'(w), X (w),w) <1,
so (29) is contractive holding fixed X ~*(w).
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First, we will rearrange (29). We multiply both sides by the denominator of the leading

p—l—tp(Xi(w)lX*i(w) o) and collect terms:

fraction

pVi(w) =7 (X' (@), X' (w),w)
+ (X (W), X7 (w),w) By {0 (X (w), X (w), 0,0 ) + VW) | w, X (w), X7} w)}
— ¢ (X(w), X (w),w) Vi(w).
We now apply the uniformization method. Choose v > max,, sup,: ¢ (z¢, X "*(w),w). We
will introduce self-transitions so that in state w, at rate ¢ (X*(w), X ~*(w),w), we transition
according to ®° (X% (w), X (w),w,w’) as before, but at rate v — ¢ (X*(w), X "(w),w) we
will have a self-transition that does not change the state. This does not change the value

function, but yields a uniform representation with a constant rate v of transitions across all

states w. To see this, we add vV*(w) to both sides of the previous equation:

(p+v)Viw)=m (Xi(w),X*i(w),w)
+¢ (X (w), X7H(w),w) By {07 (X (w), X7 (w),w, ) + VW) | w, X' (w), X7} (w)}
+ (1/ — (Xi(w),X_i(w),w)) Viw).

Finally, solving for V* gives

Vi(w) = pi (X (), X7 (w),w)
+ £ <Xl(w3)’fyl(w)’“) B {0 (XH(), X7 (@).w.) + Vi) 0, X (), X' ()]

Lvo¥ (X' (w), X" (w),w)

ot Vi(w).

Alternatively, we can think of this as an expectation over the state @’ where

w’  with probability (X (@) X~ (w).w)

(Xi(w),X_i(w),w)

v Y

w  with probability 1 — z

so that
Vi) = - i (X (), X7 (w),w)
+- i By {0 (X7 (), X 7T(@),0,6) + Vi) | @, X' (@), X @)},
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and where we define self-transitions to be costless:
P (X"(w),X*i(w),w,w) =0.
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