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Overview

Paper concerns continuous time dynamic discrete choice games:

⊚ Generalizes Arcidiacono, Bayer, Blevins, and Ellickson (2016).

⊚ Infinite horizon game, time indexed by t ∈ [0,∞).

⊚ Firms i = 1, . . . ,N maximize expected discounted profits.

⊚ Finite states k = 1, . . . ,K .

⊚ Discrete actions w/choice-specific errors as in DT.

⊚ Decision times not fixed, but ∼ Exponential(λik).

⊚ Markov perfect equilibrium in choice probabilities.

⊚ CT reduced form: choice-specific hazards.

⊚ DT reduced form: state-to-state transition probabilities.



Contributions of This Paper

1. Identification of heterogeneous rates λik :
◦ Previous work assumed λ = 1.
◦ Can we identify and estimate the rates λ?
◦ What about heterogeneous rates λik?
◦ Firm-state-specific rates allow strategic differences.
◦ Firm heterogeneity may reduce multiplicity.

2. Re-establish some important theoretical properties:
◦ Existence of a Markov perfect equilibrium (MPE).
◦ Linear representation of value function given conditional choice
probabilities (CCPs).

3. Identification with only DT “snapshot” data:
◦ Identification of CT reduced form from DT data.
◦ Identification of structural primitives from CT reduced form.

4. Empirical and Monte Carlo evidence with canonical examples:
◦ Single agent renewal model.
◦ Dynamic oligopoly quality ladder model.



Motivation: Computational Advantages

⊚ Estimation of dynamic discrete choice games is difficult.
◦ Full-solution (NFXP) following Rust (1987) was infeasible.
◦ Two-step (CCP) estimation proved useful (Rust, 1994,
Aguirregabiria and Mira, 2007, Bajari, Benkard, and Levin,
2007, Pakes, Ostrovsky, and Berry, 2007).

⊚ These allow us to estimate complex games, but solving and
simulating them remains difficult.

⊚ Hard to handle more than a few firms and one state variable.
⊚ Computational complexity in DT of firms’ expectations:

◦ Suppose N players can each move to one of κ states.
◦ Due to simultaneity, firms have beliefs about κN future states.

⊚ Researchers forgo counterfactuals or use simpler models.

⊚ In CT, firms consider N(κ− 1) state changes (linear in N).



Motivation: Economic Implications

⊚ Often, data are “snapshots” at equispaced intervals.

⊚ Discrete time, simultaneous-move models match this.

⊚ But this is a sampling limitation, not necessarily a desirable
model feature.

⊚ “Simultaneous move” paradigm has both informational and
timing implications.

⊚ Specifying simultaneous moves when they are sequential leads
to bias in entry costs, competitive effects, etc.

⊚ Instead, we specify the model at the level of real actions and
aggregate to the data frequency for estimation.
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Replication Code

⊚ This paper:
◦ Implemented in Modern Fortran with OpenMP.
◦ Low-level sparse matrix implementations for large state spaces.
◦ Simpler solution methods and numerical gradients.
◦ https://github.com/jrblevin/ctgames-qe

⊚ Other working paper:
◦ Python with NumPy/SciPy and Cython.
◦ Pre-packaged sparse matrix algorithms from SciPy.
◦ More efficient solution methods with analytical derivatives.
◦ https://github.com/jrblevin/ctcomp

https://github.com/jrblevin/ctgames-qe
https://github.com/jrblevin/ctcomp


Model and Basic Assumptions

⊚ Infinite horizon game, time indexed by t ∈ [0,∞).

⊚ Firms i = 1, . . . ,N maximize expected discounted profits.

⊚ Finite state space X ⊂ RL with K = |X | <∞.

⊚ Encoded state space K = {1, . . . ,K}.
⊚ Exogenous state changes occur according to Q0 = (qkl).

⊚ Decision times occur at rate λik .

⊚ Choice sets J = {0, 1, 2, . . . , J − 1}.
⊚ Endogenous state changes induced by actions of players.

⊚ Conditional choice probabilities σijk .

⊚ Imply hazards hijk = λikσijk .

⊚ Dynamics characterized by a Markov jump process (CTMC).



2× 2 Entry Example

⊚ Two firms i ∈ {1, 2}.
⊚ Two actions j ∈ {0, 1}:

◦ j = 0: continuation (remain active if active, inactive if inactive)
◦ j = 1: switching action (enter if inactive, exit if active)

⊚ Two demand states d ∈ {L,H}.
⊚ State space:

X = { (0, 0, L), (1, 0, L), (0, 1, L), (1, 1, L),
(0, 0,H), (1, 0,H), (0, 1,H), (1, 1,H) }

⊚ State space in “encoded” form:

K = {1, 2, 3, 4, 5, 6, 7, 8}.

⊚ Let hik ≡ hi1k denote the hazard of firm i switching in state k .

⊚ Let γL and γH be the hazards of switching demand states.



2× 2 Entry: Figure

Low Demand

High Demand

h11

h26

h12

γL h27

γHh22

h16

h24

h13

h18

h14

h15

h23h21

h28

h17

h25

(1, 0, H)

(1, 1, H)(0, 1, H)

(0, 0, H)

(1, 0, L)

(1, 1, L)(0, 1, L)

(0, 0, L)



2× 2 Entry: Intensity Matrix Q = Q0 + Q1 + Q2

Q =



· h11 h21 0 γL 0 0 0
h12 · 0 h22 0 γL 0 0
h23 0 · h13 0 0 γL 0
0 h24 h14 · 0 0 0 γL
γH 0 0 0 · h15 h25 0
0 γH 0 0 h16 · 0 h26
0 0 γH 0 h27 0 · h17
0 0 0 γH 0 h28 h18 ·


Intuition for identification:

⊚ Can determine Q0, Q1, and Q2 since locations of nonzero
elements in Q are distinct.

⊚ Instantaneous model is sparse even though DT counterpart is
dense.

⊚ Admissible Q matrices must have the same structure.



Payoffs & Decisions

In between decisions:

⊚ Game remains in some state k.

⊚ Players receive flow payoffs uik .

⊚ Present discounted payoff in state k over interval [0, τ):∫ τ

0
e−ρi t uik dt.

At a decision time:

⊚ Player i chooses action j ∈ {0, . . . , J − 1}.
⊚ Player i receives an instantaneous payoff cijk(t).

⊚ Game moves to a new state k ′ = l(i , j , k) ∈ K.

Nature (i = 0) changes the state from k to l at rate qkl .



Assumptions

⊚ Bounded rates: for all i = 1, . . . ,N, k, l = 1, . . . ,K ,

ρi , λik ∈ (0,∞), qkl ∈ [0,∞).

⊚ Discount rates ρi are known.

⊚ Additive separability of instantaneous payoffs at decision
times:

cijk = ψijk + εijk .

⊚ Known error distribution:

a εijk i.i.d. over decision times, players, and states;
b F absolutely continuous with respect to Lebesgue measure;
c E[εijk ] <∞;
d support of εijk is R.

⊚ Convenient sufficient condition: εijk are iid TIEV.



Rust (1987) Example

State variable is accumulated mileage

K = {1, . . . ,K}

with K × K intensity matrix

Q0 =



−γ γ 0 0 · · · 0
0 −γ γ 0 · · · 0
...

...
. . .

...
...

...
0 0 · · · −γ γ 0
0 0 · · · 0 −γ γ
0 0 · · · 0 0 0


.

Multi-state jumps over a time interval are still possible.



Rust (1987) Example

At rate λk , Harold Zurcher decides whether or not to replace a bus
engine in mileage state k : J = {0, 1}.

Cost minimization problem:

⊚ flow utility uk received while in state k ,

⊚ continuation (j = 0) is costless with ψ0k = 0,

⊚ replacement cost ψ1k = µ < 0 paid upon replacement (j = 1),

⊚ plus i.i.d. shocks εjk in each case.

Solving the dynamic program yields probability of replacement: σ1k



Rust (1987) Example

Intensity matrix for the agent:

Q1 =



0 0 0 0 · · · 0
λ2σ12 −λ2σ12 0 0 · · · 0
λ3σ13 0 −λ3σ13 0 · · · 0

...
...

...
. . .

...
...

λK−1σ1,K−1 0 · · · 0 −λK−1σ1,K−1 0
λKσ1K 0 · · · 0 0 −λKσ1K


.

Aggregate intensity matrix: Q = Q0 + Q1.



Value Functions with N Players

Let ςi denote player i ’s beliefs about rival choice probabilities.
The value function for player i in state k is

Vik(ςi ) =
1

ρi +
∑

l ̸=k qkl +
∑

m λmk
×

uik +∑
l ̸=k

qklVil(ςi )

+
∑
m ̸=i

λmk

J−1∑
j=0

ςimjkVi ,l(m,j ,k)(ςi )

+λik Emax
j

{
ψijk + εijk + Vi ,l(i ,j ,k)(ςi )

}]
.



Markov Perfect Equilibrium

Following Maskin and Tirole (2001) and empirical discrete-time
games literature: Markov perfect equilibria in pure strategies.

Definition
A Markov perfect equilibrium (MPE) is a collection of stationary
Markov policy rules {δ∗i }Ni=1 such that for each player i and for all
(k, εik):

δ∗i (k, εik) = argmax
j

{
ψijk + εijk + Vi ,l(i ,j ,k)(ςi )

}
(best response)

ςimjk = Pr [δ∗m(k, εmk) = j | k] for all m ̸= i (consistent beliefs)

Equilibrium CCPs: σijk = Pr [δ∗i (k, εik) = j | k]



Theorem 1: Existence of MPE

Theorem
Under the maintained assumptions, a Markov perfect equilibrium
exists.

Proof is straightforward:

⊚ Define Υ : [0, 1]N×J×K → [0, 1]N×J×K by stacking best
response probabilities.

⊚ Υ is continuous on compact set [0, 1]N×J×K .

⊚ By Brouwer’s fixed point theorem, Υ has a fixed point.

⊚ Fixed point probabilities imply stationary Markov strategies
that constitute an MPE.



Theorem 2: Linear Representation of Vi

⊚ CCP inversion of ABBE yields a linear representation of Vi (σ).

⊚ Useful for both identification and estimation.

Theorem
Under the maintained assumptions, for a given collection of
equilibrium CCPs σ, Vi has the following linear representation:

Vi (σ) = Ξ−1
i (σ) [ui + LiCi (σi )] (1)

Ξi (σ) = ρi IK +
N∑

m=1

Lm[IK − Σm(σm)]− Q0 (2)

where Ξi (σ) is a nonsingular K × K matrix, where:

⊚ Lm = diag(λm1, . . . , λmK ): diagonal matrix of rates,

⊚ Σm(σm): transition matrix implied by player m’s CCPs,

⊚ Ci (σi ): expected instantaneous payoffs given player i ’s CCPs.



Overview of Identification Strategy

⊚ Implications of structural model:

θ 7→ {ui , ψi , λi ,Vi , σi} 7→ {hi ,Qi} 7→ Q 7→ P(∆).

⊚ Identification analysis:

P(∆) 7→ Q 7→ {Qi , hi} 7→ {λi , σi ,Vi , ψi , ui} 7→ θ

⊚ Overview of identification results:
◦ Address aliasing problem in P(∆) 7→ Q using nonparametric
structural restrictions

◦ Identifying restrictions on {hi ,Vi , ψi} from model structure.
◦ Given identified quantities, apply Theorem 2 to identify ui .



Identification of Q

With equispaced discrete time observations, P(∆) = (Pkl(∆)) is
observable but Q is not.

Is there a unique matrix Q such that

P(∆) = exp(∆Q) ≡
∞∑
j=0

(∆Q)j

j!
= I + Q +

1

2
Q2 + . . .?

In discrete time with τ subperiods, is there a unique P0 with

P(∆) = Pτ
0 ?

For both questions, the answer is no in general.



Identification of Q: Restrictions on P(∆)

Sufficient conditions for identification of Q:

⊚ P(∆) has distinct, real, and positive eigenvalues.

⊚ Q has distinct, real eigenvalues.

⊚ mini{Pii (∆)} > 1/2.

⊚ detP(∆) > e−π.

⊚ Unclear which structures satisfy these “top-down”
conditions...

Alternative sampling schemes:

⊚ ∆ < ∆.

⊚ P(∆1) and P(∆2) with ∆1 ̸= k∆2, k ∈ N.
⊚ Different observation intervals help, but often not available...

Phillips (1973): Economic models usually restrict Q itself, rather
than P(∆).



Identification of Q: Prior Restrictions on Q

Assumption

Q has distinct eigenvalues µ1, . . . , µK that do not differ by an
integer multiple of 2πi/∆.

By Gantmacher (1959) and Phillips (1973), all solutions Q̃ to
exp(∆Q̃) = P(∆) satisfy

Q̃ = Q + VDV−1

with Q = VΛV−1

D =
2πi

∆

0 0 0
0 M 0
0 0 −M

 ,M = diag(m1, . . . ,mρ),mi ∈ Z .

Without restrictions, the following are identified:

⊚ Eigenvectors V ,

⊚ Number of complex eigenvalues 2ρ,

⊚ Real eigenvalues µ2ρ+1, . . . , µK .



Identification of Q: Linear restrictions on Q

Blevins (2017) derived a rank condition under which
⌊
K
2

⌋
linear

restrictions on vecQ are sufficient for a general K × K matrix Q:

R vec(Q) = r .

Any other solutions Q̃ must also satisfy the prior restrictions on Q
to be admissible.

Specializing this to the case of intensity matrices, we derive
conditions for identification of Q using only

⌊
K−1
2

⌋
restrictions,

focusing on nonparametric restrictions from the model structure.



Theorem 3: Identification of Q

Theorem
Suppose the state vector is
x = (x0, x1, . . . , xN) ∈ X0 ×X1 × · · · × XN where the component
x0 ∈ X0 is an exogenous market characteristic taking |X0| = K0

values and for each i = 1, . . . ,N the component xi is a
player-specific state affected only by the action of each player with
|Xi | = K1 possible distinct values. If Q has distinct eigenvalues
that do not differ by an integer multiple of 2πi/∆, then Q is
identified when

K0K
N
1 − K0 − NJ +

1

2
≥ 0. (3)

The quantity on the left is strictly increasing in K1, strictly
increasing in K0 when K1 > 1, and strictly decreasing in J.



Intuition for the Order Condition

⊚ State vector is x = (x0, x1, . . . , xN) where
◦ x0 is a common state taking K0 values (exogenous),
◦ xi is a firm-i-specific state taking K1 values,
◦ xi only affected by the actions of player i .

⊚ Each player i has J choices. Total states: K = K0K
N
1 .

⊚ Need ⌊(K − 1)/2⌋ linear restrictions on Q.

⊚ We have K − J(J − 1)− (K0 − 1)− 1 known zeros per row!

⊚ Order condition satisfied when: K0K
N
1 − K0 − NJ + 1

2 ≥ 0.

Examples where Q is identified:

⊚ The 2× 2 entry model

⊚ Single-agent renewal model when K ≥ 3

⊚ All nontrivial (K1 ≥ 2) binary choice games

⊚ All three-choice games with K1 ≥ 3



Identification of the Structural Primitives

⊚ With Q in hand, we turn to the structural primitives.

⊚ Note that hijk = λikσijk identified for j > 0.
⊚ With T1EV errors, hazard analog of CCP inversion:

ln hijk = ln hi0k + ψijk + Vi,l(i,j,k) − Vik .

⊚ Stacking across states and actions gives a linear system:

 ln hi1
...

ln hi ,J−1

 =


IK IK 0 . . . 0 Si1 − IK
IK 0 IK . . . 0 Si2 − IK
...

...
...

...
...

...
IK 0 0 . . . IK Si ,J−1 − IK



ln hi0
ψi1
...

ψi ,J−1

Vi

 .

⊚ Si ,j = transition matrix induced by firm i making choice j .



Theorem 4: Identification of the Structural Primitives

Theorem
For each player i , the augmented system with linear restrictions is:

[
ln h+i
ri

]
=

[
Xi

Ri

]ln h0iψi

Vi

 ,
where Xi is an identified (J − 1)K × (J + 1)K matrix with rank
(J − 1)K. If R contains 2K additional full-rank restrictions such

that
[
Xi
Ri

]
has rank (J + 1)K, then h0i , ψi , and Vi are identified.

In CT, number of restrictions is linear in N while in DT it is
exponential in N (Pesendorfer and Schmidt-Dengler, 2008).



Finding Restrictions for Identification

⊚ Constant move arrival rates: λik = λi gives K − 1 restrictions

⊚ Constant instantaneous payoffs: ψijk = ψij gives
(J − 1)(K − 1) restrictions

⊚ Exclusion restrictions: Vik = Vik ′ when states are
payoff-equivalent

⊚ Terminal states: Vik = 0 in absorbing states

Example: Binary choice (J = 2) with λik = λi and ψi1k = ψi1:
(K − 1) + (K − 1) = 2K − 2 restrictions ⇒ need only 2 more

⊚ Not including cross-player & shape restrictions.

⊚ Rank condition can usually be verified by inspection.



Theorem 5: Identification of the Flow Payoffs ui

Theorem
Suppose the above assumptions hold. If for any player i the
quantities Vi , ψi , and Q are identified, then the flow payoffs ui are
also identified.

The proof follows from using the linear representation from
Theorem 2, noting that all quantities other than ui are identified,
and solving for ui .



Estimation with Discrete Time Data

⊚ Markets m = 1, . . . ,M are independent.

⊚ Sample for market m consists of states {kmt} observed at
times ∆t for t = 1, . . . ,T .

⊚ We cannot see the actual sequence of events.

⊚ Observations are sampled at regular intervals of length ∆.

⊚ Estimate θ using implied transition matrix Pθ(∆).

⊚ Log-likelihood for a sample {{kmt}Tt=1}Mm=1:

ln LM(θ) =
M∑

m=1

T∑
t=1

ln[Pθ(∆)]km,t−1,kmt .



Single Agent Monte Carlo Experiments

⊚ Based on bus engine replacement model (Rust, 1987).

⊚ State space (mileage): X = {1, . . . , 90}.
⊚ Parameters are cost of mileage β, replacement cost µ, rate of

mileage increase γ, and decision rates λik .

⊚ Buses m = 1, . . . ,M observed for Tm months.

⊚ First, we use the real data to estimate parameters.

⊚ Three specifications for λik :

λik = 1, λik = λ, λik =

{
λL if k ≤

⌊
K
2

⌋
,

λH otherwise.

⊚ CT discount factor ρ = 0.05 (DT β = e−0.05 ≈ 0.95).

⊚ Sample contains M = 162 buses with Tm ∈ {24, . . . , 125}.
⊚ Total of 15,402 discrete-time bus-month observations.



Estimates with Rust (1987) Data

Fixed λ = 1 Variable λ Het. λ
Est. S.E. Est. S.E. Est. S.E.

Dec. Rate (λ) 1.000 – 0.032 (0.005) – –
Dec. Rate 1 (λL) – – – – 0.022 (0.004)
Dec. Rate 2 (λH) – – – – 0.033 (0.005)
Mil. Rate (γ) 0.526 (0.006) 0.526 (0.006) 0.526 (0.006)
Mil. Cost (β) -0.533 (0.052) -1.257 (0.285) -1.711 (0.493)
Repl. Cost (µ) -8.081 (0.393) -8.072 (1.345) -9.643 (2.189)

LL -13947.55 -13938.51 -13937.66
Obs. 15406 15406 15406

Test for H0 : λL = λH = 1
LR – 18.08 19.78
p-value – 0.00002 0.00005

Test for H0 : λL = λH

LR – – 1.70
p-value – – 0.1923



Conclusions from Rust (1987) Data

⊚ Estimated decision rates are quite different from 1.

⊚ We strongly reject λ = 1, but fail to reject λL = λH.

⊚ Relatively low rate of monitoring, but a higher cost of mileage.

⊚ With forced monthly decisions: model compensates w/lower
mileage cost to fit observed replacement timing.



Single Agent Monte Carlo Experiments

⊚ Choose the Monte Carlo parameters based on estimates:

(λL, λH, γ, β, µ) = (0.05, 0.10, 0.5,−2.0,−9.0).

⊚ This allows us to interpret 1 unit of time as 1 month.

⊚ We simulate data over t ∈ [0, 120] (10 years) for M markets.

⊚ We vary M from 200 to 3200.

⊚ CT data and DT data with ∆ ∈ {0.0, 1.0, 8.0}.
⊚ Report mean and s.d. over 100 replications.



Single Agent Monte Carlo Results

M Sampling λL λH γ β µ
∞ DGP True 0.050 0.100 0.500 -2.000 -9.000

200 Continuous Mean 0.050 0.100 0.500 -2.050 -9.178
S.D. 0.007 0.008 0.004 0.310 1.096

200 ∆ = 1.00 Mean 0.051 0.100 0.508 -2.079 -9.235
S.D. 0.007 0.008 0.004 0.317 1.117

200 ∆ = 8.00 Mean 0.051 0.100 0.508 -2.093 -9.284
S.D. 0.009 0.009 0.005 0.374 1.281

800 Continuous Mean 0.050 0.100 0.500 -1.988 -8.957
S.D. 0.003 0.005 0.002 0.121 0.427

800 ∆ = 1.00 Mean 0.051 0.101 0.508 -2.011 -8.999
S.D. 0.003 0.005 0.002 0.124 0.433

800 ∆ = 8.00 Mean 0.051 0.100 0.508 -2.018 -9.020
S.D. 0.003 0.005 0.003 0.145 0.498

3200 Continuous Mean 0.050 0.100 0.500 -1.995 -8.999
S.D. 0.002 0.002 0.001 0.072 0.238

3200 ∆ = 1.00 Mean 0.051 0.100 0.508 -2.014 -9.025
S.D. 0.002 0.002 0.001 0.072 0.233

3200 ∆ = 8.00 Mean 0.051 0.100 0.508 -2.009 -9.004
S.D. 0.002 0.002 0.001 0.075 0.244



Quality Ladder Model

Following Ericson and Pakes (1995), Pakes and McGuire (1994):
⊚ N firms with products of quality ωi ∈ {1, 2, . . . , ω̄, ω̄ + 1}

◦ States 1 to ω̄: active incumbent firms
◦ State ω̄ + 1: inactive/potential entrants

⊚ Heterogeneous move arrival rates:
◦ λH: high quality firms (ωi ≥ ωh)
◦ λL: low quality firms (ωi < ωh) and potential entrants

⊚ Firm decisions:
◦ Incumbents: continue, invest κ to upgrade quality, or exit
(scrap value ϕ)

◦ Potential entrants: enter at cost η w/quality ωe , or stay out

⊚ Flow costs/profits: fixed cost µ, profits πik from
Nash-Bertrand competition, logit demand model.

⊚ Industry-wide negative shocks at rate γ (outside alternative
improvement)



Quality Ladder Model: Monte Carlo Setup

⊚ Model specifications:
◦ Number of firms: N = 2 to 30
◦ Quality levels: ω̄ = 7, entry at ωe = 4, threshold ωh = 4.
◦ State space size: K ranges from 56 to 58+ million states

⊚ Simulation details:
◦ Time horizon: T = 120 (CT and DT with ∆ = 1)
◦ Market size M̄ increases with N to maintain reasonable navg
◦ 100 replications per specification



Quality Ladder Model: Computational Time

N ω̄ K M̄ Obtain V

2 7 56 0.40 0.15 sec.
4 7 840 0.60 0.27 sec.
6 7 5,544 0.75 0.65 sec.
8 7 24,024 0.85 3 sec.

10 7 80,080 0.95 10 sec.
12 7 222,768 1.05 30 sec.
14 7 542,640 1.15 1.3 min.
16 7 1,193,808 1.20 3.3 min.
18 7 2,422,728 1.25 7.0 min.
20 7 4,604,600 1.30 13.7 min.
22 7 8,288,280 1.35 27.5 min.
24 7 14,250,600 1.40 49.4 min.
26 7 23,560,992 1.45 1.8 hr.
28 7 37,657,312 1.50 3.0 hr.
30 7 58,433,760 1.55 4.9 hr.

Doraszelski and Judd (2012): N = 14, approx. one year in DT.



Quality Ladder Model: Monte Carlo

N K Sampling λL λH γ κ η µ
DGP True 1.000 1.200 0.400 0.800 4.000 0.900

2 56 Continuous Mean 0.997 1.196 0.400 0.796 3.988 0.899
S.D. 0.015 0.020 0.010 0.032 0.137 0.021

∆ = 1.0 Mean 1.021 1.223 0.399 0.801 3.932 0.914
S.D. 0.177 0.181 0.007 0.283 0.841 0.063

4 840 Continuous Mean 0.999 1.198 0.397 0.806 4.030 0.897
S.D. 0.013 0.018 0.014 0.033 0.160 0.022

∆ = 1.0 Mean 0.998 1.197 0.400 0.781 3.948 0.902
S.D. 0.114 0.113 0.006 0.180 0.456 0.040

6 5,544 Continuous Mean 1.001 1.198 0.399 0.798 4.013 0.900
S.D. 0.014 0.018 0.016 0.035 0.144 0.021

∆ = 1.0 Mean 1.004 1.207 0.399 0.805 4.017 0.901
S.D. 0.087 0.088 0.006 0.135 0.330 0.032

8 24,024 Continuous Mean 1.000 1.200 0.400 0.802 4.027 0.899
S.D. 0.013 0.017 0.018 0.033 0.149 0.023

∆ = 1.0 Mean 1.012 1.213 0.400 0.814 4.030 0.905
S.D. 0.082 0.083 0.005 0.125 0.292 0.030



Conclusion

⊚ Identification of move arrival rates in the ABBE model.
⊚ Theoretical properties:

◦ Existence of Markov perfect equilibrium.
◦ Linear representation of value function in terms of CCPs.

⊚ Econometric properties:
◦ Identification of Q, λ, σ, V , ψ, and u.
◦ Degree of underidentification less severe than in DT.
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