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1. Introduction

This paper considers a semiparametric binary response model and develops several asymptotic

results for criterion-function-based set estimators of the kind considered by Chernozhukov,

Hong, and Tamer (2007) (henceforth CHT). First, we verify the conditions of CHT for the semi-

parametric binary choice model under a conditional median restriction to establish cube-root

consistency of a set estimator for the identified set when a continuous regressor is present.

A second, technical contribution is to provide new sufficient conditions (in Appendix B) for

cube-root consistency of set estimators based on contour sets of criterion functions that can

be used to analyze other models and which may be easier to verify than the more general ones

currently available in the literature. Third, we verify the conditions of Romano and Shaikh (2010)

for subsampling-based inference for the binary choice model and determine the appropriate

scaling sequence for the inferential statistic used in their procedure for this case. Fourth, for the

binary response model with discrete regressors we show that the rate of convergence is arbitrarily

fast, which agrees with previous findings of Komarova (2013) for a related estimator based on

a recursive linear programming algorithm. Fifth, we show that the source of this property is a

discontinuity in the limiting objective function and give a general condition under which the

identified set can be estimated at an arbitrarily fast rate in other models with this feature. Finally,

we carry out a series of Monte Carlo experiments to verify our theoretical findings and explore

the small sample behavior of the proposed estimators.

This paper builds on a large literature on partially identified models. We consider criterion-

function-based estimation and inference which started with Manski and Tamer (2002), who

analyzed a semiparametric binary response model with interval-valued data under a conditional

quantile restriction. They derived the sharp identified set for the model, proposed a set esti-

mator, defined as an appropriately-chosen contour set of a modified maximum score objective

function, and showed that it was consistent. Chernozhukov, Hong, and Tamer (2007) developed

a broad framework for criterion-function-based estimation and established general conditions

for consistency and rates of convergence of estimators in this class. They also proposed a

subsampling-based procedure for obtaining confidence sets with some pre-specified coverage

probability. Subsampling-based inference was further explored by Romano and Shaikh (2008,

2010) and Andrews and Guggenberger (2009) while Bugni (2010) and Canay (2010) have proposed

bootstrap procedures. These and many other authors have studied inference in moment equal-

ity and inequality models, including but certainly not limited to Andrews and Barwick (2012),

Pakes, Porter, Ho, and Ishii (2011), Beresteanu and Molinari (2008), Beresteanu, Molchanov, and

Molinari (2011), Imbens and Manski (2004), Stoye (2009), Kim (2008), Khan and Tamer (2009),

Menzel (2014), Andrews and Shi (2013), Andrews and Soares (2010), and Yildiz (2012).
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Our results also follow a long line of work on identification and estimation of binary re-

sponse models under various conditions. Once parametric binary response models were

well-understood (McFadden, 1974; Maddala, 1983; Amemiya, 1985), semiparametric methods

emerged to estimate models without making parametric assumptions about the error distri-

bution. Such methods include maximum score (Manski, 1975, 1985; Kim and Pollard, 1990;

Horowitz, 1992), distribution-free maximum likelihood (Cosslett, 1983), average derivative es-

timation (Stoker, 1986), maximum rank correlation (Han, 1987), kernel estimators (Ichimura,

1993; Klein and Spady, 1993), and instrumental variables (Lewbel, 2000). Matzkin (1992) studied

nonparametric identification and estimation of binary response models.

Finally, this paper is also related to a growing literature concerned with semiparametric

estimation of models with limited support regressors, typically involving either discrete or

interval-valued regressors. Bierens and Hartog (1988) showed that there are infinitely many

single-index representations of the mean regression of a dependent variable when all covariates

are discrete. Manski and Tamer (2002) considered partial identification and estimation of binary

response models with an interval-valued regressor. Honoré and Tamer (2006) discussed partial

identification due to the initial conditions problem in dynamic random effects discrete choice

models with discrete regressors. Magnac and Maurin (2008) considered a similar model, but in

the cases of discrete or interval-valued regressors and in the presence of a special regressor which

satisfies both a partial independence and a large support condition. Honoré and Lleras-Muney

(2006) estimated a partially identified competing risks model with interval outcome data and

discrete explanatory variables. Horowitz (2009) discussed the generic non-identification of

single-index and binary response models with only discrete regressors, a result which serves

to motivate our analysis. Komarova (2013) proposed consistent estimators, based on a linear

programming procedure, of the identified set in a binary response model with discrete regressors.

Wan and Xu (2015) study the asymptotic properties of set estimators for semiparametric binary

response models with interval valued regressors. Finally, the importance of the theoretical topics

addressed in this paper are highlighted by empirical work using maximum score methods, such

as that of Bajari, Fox, and Ryan (2008).

2. Semiparametric Binary Response Model

Our leading example throughout the paper is the semiparametric binary response model. Manski

(1988) studied identification of additively separable binary response models in the presence of a

continuous regressor and compared the identification power of several assumptions, showing

that mean independence has no identifying power but that quantile independence can be

sufficient for point identification. As such, we focus on the binary response model under a
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conditional median restriction. Estimators for this model are based on a simple rank condition

of the form y = 1 ⇐⇒ x ′θ ≥ 0 where y is the binary outcome, x is a vector of regressors, and θ is

a vector of parameters. In the point identified case, this includes the maximum score estimator

of Manski (1975, 1985) and smoothed maximum score estimator of Horowitz (1992).

Both these and the related semiparametric methods mentioned above typically assume the

existence of an exogenous explanatory variable with rich support. Rank conditions have been

successful in estimating more general regression models, but the known conditions for point

identification still include a rich support condition (Han, 1987; Abrevaya, 2000). In practice,

however, it is not uncommon to encounter datasets with genuinely discrete or bounded variables.

Without a regressor with full support on the real line, under semiparametric assumptions, the

models we consider are only partially identified in general (Horowitz, 2009).

We now formalize the basic linear-index binary response model of interest.

Model 1 (Semiparametric Binary Response Model). Let the outcome y ∈ {0,1} be determined as

y = 1{x ′θ+u ≥ 0}

where x is a random vector with support X ⊆RK , and θ is the parameter of interest, a member of

some parameter spaceΘ⊂RK . The distribution of u satisfies Med(u | x) = 0 Fx-a.s.

The model and assumptions are the same as in the maximum score model of Manski (1975,

1985), but without the support and rank assumptions on x. Although we assume that the

conditional median of the error term is zero, this is for simplicity. A similar assumption could be

made on any other quantile instead (Manski, 1988). In contrast to Magnac and Maurin (2008),

we make no additional assumptions on the support of u.

We note that even in the point identified case, the maximum score estimator is essentially

a set estimator. Because the sample objective function is a step function, there is no guidance

about which point from the set of maximizers to choose as a point estimate. Asymptotically, the

estimator is consistent for any such selection. In practice the selection rule is typically implicit

or ad hoc, being determined by the stopping criteria of an optimization routine. In the absence

of a suitable selection rule, one may as well regard the estimator as a set estimator consisting

of all values of θ that maximize the objective function. In this sense, the estimators we present

below can be used without regard to whether the model is point identified or partially identified.

Consistency guarantees that the limit is the respective population point or set of interest.

Modulo assumptions on the errors, point identification of θ hinges on what one knows about

the distribution of x. The validity of a full support assumption is application-specific. Many

variables such as age, number of children, years of education, and gender are inherently discrete

and so a full support assumption is clearly inappropriate in these cases. Similarly, even variables
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such as income have only partial support on the real line. One advantage of the estimators we

propose is that one need not distinguish between the point and partial identification. That is,

they do not require a regressor with full support but exploit the additional information provided

by one when available. We work under the following alternative assumptions.

Assumption C1 (Continuous Regressor). The K -th component of the random vector x, denoted

xK , has positive density everywhere on a set XK ⊆ R conditional on almost every value of the

remaining components and θK 6= 0.

Assumption C2 (Discrete Regressors). The vector-valued random variable x has finite support

X = {x1, x2, . . . , xL} ⊂RK for L <∞ and P (y = 1 | x l ) 6= 1
2 for all l = 1, . . . ,L.

Manski (1975, 1985) showed that when one component of x is continuously distributed

and has support equal to R, conditional on almost every value of the remaining components,

then θ is point identified (provided that the components of x are also linearly independent).

Assumption C1 is weaker than this because the support of the continuous component may be

bounded. Note that Assumption C1, which is a restriction on the conditional density, does not

rule out the possibility that XK =R, but it also includes cases where the support of x is bounded.

In Assumption C2, the requirement that the population response probabilities are not exactly 1
2

serves to avoid problems that prevent consistent estimation of the identified set in this case, as

discussed in detail by Komarova (2013).

To provide another example, consider the following semiparametric transformation model

which generalizes Model 1 by substituting an unknown, weakly monotonic functionΛ in place

of the indicator function and by allowing the outcome to be continuous.

Model 2 (Semiparametric Transformation Model). Let y ∈ R be determined by y = Λ(x ′θ+u)

where x is a random vector with support X ⊆RK , θ is the parameter of interest, a member of some

parameter spaceΘ⊂RK , and the functionΛ :R→R is (weakly) monotonic. The distribution of u

satisfies Med(u | x) = 0 Fx-a.s.

Even with continuous variation in y , θ may only be partially identified if no component of

x has full support on R, conditional on the remaining components, when u is heteroskedastic.

In contrast, Han (1987) achieved point identification by assuming one component of x has full

support, conditional on the remaining components, and that u and x are independent. Without

independence, Model 2 is very similar to Model 1 in terms of identification and estimation (the

latter arises withΛ(·) = 1{· ≥ 0}), with both being characterized in terms of a rank condition that

can be used to construct an objective function. We will thus focus on Model 1 in the remainder.
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2.1. Partial identification

Relaxing assumptions in econometric models is often desirable but can lead to a failure of point

identification. For example, in Model 1 we avoid both a parametric distributional assumption on

u and a support condition on x, either of which would suffice for point identification. Fortunately,

a recent and growing literature on partially identified models has shown that in many cases we

can still carry out inference about the parameters of interest even under assumptions weaker

than those known to provide point identification.1 In particular, a criterion-function-based

approach to set estimation, motivated by classical extremum estimation of point-identified

models, has proven useful for analyzing partially identified models such as those based on

moment inequalities. Set estimators for this class of models, under certain regularity conditions,

are essentially
p

n-consistent (Chernozhukov et al., 2007).

Model 1 does not satisfy the same regularity conditions and so the set estimator based on the

maximum score objective function is not
p

n-consistent. Kim and Pollard (1990) showed that the

point estimator (under a full support condition) is cube-root-consistent and has a non-standard

limiting distribution. These properties are often perceived as disadvantages, but the maximum

score estimator has proven to be important and useful due to its robustness, both to unknown

error distributions and to heteroskedasticity of unknown form. Furthermore, recent work on

classical MCMC-based inference by Jun, Pinkse, and Wan (2011) makes point estimation and

inference for this model much more accessible.

The primitives of Model 1 are θ and Fu|x , but θ is the only finite-dimensional parameter

of interest. The identified set is the collection of parameters θ that are consistent with the

data generating process P for some distribution Fu|x . The following lemma provides a tractable

representation of the identified set for θ in Model 1 in terms of observables.

Lemma 1. In Model 1, the identified set is

(1) Θ0 =
{
θ ∈Θ : sgn

(
P (y = 1 | x)−1/2

)= sgn(x ′θ) Fx −a.s.
}

where sgn(·) is defined as sgn(z) = 1{z ≥ 0}−1{z < 0}. Furthermore,Θ0 is nonempty and convex.

Proof of Lemma 1. That the identified set,Θ0, equals the set on the right hand side of (1) follows

from Proposition 2 of Manski (1988). The setΘ0 is nonempty because θ0 ∈Θ0. To see thatΘ0 is

convex, let θ1,θ2 ∈Θ0, let α ∈ (0,1), and define θ̃ ≡αθ1 + (1−α)θ2. Since θ1,θ2 ∈Θ0, from (1) it

must be the case that sgn(x ′θ1) = sgn(x ′θ2) Fx-a.s. Furthermore, 0 <α< 1 and (1) imply

sgn
(
x ′θ̃

)= sgn
(
αx ′θ1 + (1−α)x ′θ2)= sgn

(
x ′θ1)= sgn

(
P (y = 1 | x)−1/2

)
Fx-a.s.

Therefore, θ̃ ∈Θ0. ■
1See Manski (2003) and Tamer (2010) and the references therein for broad surveys of this literature.
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Although it is possible for point identification to obtain under Assumption C1 with additional

restrictions on the conditional distribution of one component of x (Horowitz, 2009, Corollary

4.1), we note that Assumption C1 is not on its own sufficient for point identification. Similarly,

it may also be possible to identify the signs of individual components of θ with only bounded,

but continuous support of one component of x (Manski, 1988). However, without additional

assumptions the present assumptions are not sufficient for point identification. Similarly, there

are special cases under Assumption C2 in which θ is point identified but additional assumptions

are needed to guarantee it (Horowitz, 1992, Section 4.2.2). Finally, we note that although the

focus of this paper is inference on the identified set Θ0, another widely-adopted approach to

inference in the literature is to focus on the true parameter θ0 ∈Θ0.

2.2. Criterion-Function-Based Set Estimation

Following Manski and Tamer (2002) and subsequent work by Chernozhukov, Hong, and Tamer

(2007), Romano and Shaikh (2008, 2010), Bugni (2010), Kim (2008), Yildiz (2012), and many

others, we consider set inference in models where the identified set is characterized by some

criterion function Q. The analogy principle suggests defining an estimator Θ̂n forΘ0 based on

the set of maximizers of the sample criterion function Qn , which is the finite sample analog of Q.

In particular, estimators are defined in terms of upper contour sets of Qn . Let Cn(τn) denote the

upper contour set of level τn , defined as

(2) Cn(τn) ≡
{
θ ∈Θ : Qn(θ) ≥ sup

Θ
Qn −τn

}
,

where τn is a non-negative “slackness” sequence which converges zero in probability.

Taking only the set of maximizers (by setting τn = 0) may result in an inconsistent estimator

(Manski and Tamer, 2002). This is a problem with estimation in partially identified models: the

literature has provided guidance about the rate at which τn must converge to zero, but not about

choosing the constant of proportionality. This leaves a degree of freedom in choosing τn and it is

not clear how the choice affects finite sample performance. As such, in the Monte Carlo section

we compare the performance of four data-driven choices of the constant of proportionality for

the sequence τn . Fortunately, this is not a problem for doing inference and reporting confidence

sets, which does not require a slackness sequence (Romano and Shaikh, 2010).

To discuss set convergence, we must first specify a metric space. Again following the literature,

we consider convergence in terms of the Hausdorff distance, a generalization of Euclidean

distance to spaces of sets. Let (Θ,d) be a metric space where d is the standard Euclidean distance.

For a pair of subsets A,B ⊂Θ, the Hausdorff distance between A and B is

(3) dH(A,B) ≡ max

{
sup
θ∈B

ρ(θ, A), sup
θ∈A

ρ(θ,B)

}
,
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where ρ(θ, A) ≡ infθ̃∈A d(θ, θ̃) is the shortest distance from the point θ to the set A. Intuitively,

the Hausdorff distance between A and B is the farthest distance between an arbitrary point in

one of the sets to the nearest neighbor in the other set.

Conveniently, we can characterize the identified set in Model 1 using the usual maximum

score objective function. The population and sample analog objective functions are

Q(θ) = E
[
(2y −1)sgn(x ′θ)

]
and Qn(θ) = 1

n

n∑
i=1

(2yi −1)sgn(x ′
iθ).

The following lemma establishes that the set of maximizers of Q provides a sharp characterization

of the identified set, justifying the use of the proposed criterion-function-based set estimators.

Lemma 2. For Model 1 with either Assumption C1 or C2, argmaxΘQ =Θ0.

Proof of Lemma 2. It follows from the structure of Q and the proof of Lemma 1 that Q is maxi-

mized whenever the signs of 2y −1 and x ′θ agree Fx-a.s., so that their product equals 1 and not

-1. Importantly, under both assumptions C1 and C2 the event 2y −1 = 0 occurs with probability

zero so the potential ambiguity over the sign of x ′θ in that case is inconsequential. ■

In each case—continuous and discrete regressors—this function has features that differ

from the objective functions used for moment inequality models. This will lead us to introduce

slight modifications of the conditions of CHT for showing consistency and deriving the rates of

convergence of the set estimators. First, under Assumption C1 the rate of uniform convergence

in probability of Qn to Q is n−1/2 overΘwhile for the moment inequality models considered by

CHT the rate is faster overΘ0 thanΘ. We will return to this point when considering the rate of

convergence in the next section, but it will also allow us to simplify the conditions for consistency.

Second, under Assumption C2 the population objective function is a step function and so we

must allow for models where Q is discontinuous. This will also be an important determinant of

the rate of convergence which we will return to after establishing consistency.

2.3. Consistency

Both Manski and Tamer (2002) and CHT give consistency results for criterion function based set

estimators. Manski and Tamer (2002) originally considered a case where the limiting objective

function is continuous, so their set consistency result (Proposition 3) will not apply in the case of

Model 1 with discrete regressors. However, Theorem 3.1 of CHT requires only semi-continuity,

which will suffice for our purposes. Here, we present a specialized version of their consistency

theorem which will suffice for our needs and which is stated in terms of maximization, rather
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than minimization, for clarity. 2 In particular, Theorem 1 below provides conditions on Q, Qn ,

and the sequence τn to ensure that Θ̂n ≡Cn(τn) is consistent forΘ0.

Assumption A1 (Compactness). Θ is a nonempty, compact subset of RK .

Assumption A2 (Well-Separated Maximum). There exists a population criterion function Q such

that for all η> 0, there exists a δη > 0 such that supΘ\Θ
η
0

Q ≤ supΘQ −δη.

Assumption A3 (Uniform Convergence). There exists a sample criterion function Qn and a

known sequence of constants an →∞ such that supΘ |Qn −Q| =Op (1/an).

Assumptions A1 and A3 are analogous to the standard compactness and uniform conver-

gence conditions for consistency of M-estimators for singletons (cf. Amemiya, 1985; Newey and

McFadden, 1994). Assumption A2 requires the population objective function to have a well-

separated maximum. This serves to rule out pathological cases that can arise in the absence of

continuity. It is satisfied, for example, when Q is a continuous function or a step function (which

may have only a finite number of steps) or when Q is upper semicontinuous in a neighborhood

of the identified set (cf. condition C.1(b) of CHT). Assumption A3 requires that Qn converge

uniformly in probability to Q and is similar to others in the literature on set estimation in that

it also requires that the rate of uniform convergence is known (cf. conditions C.1(d) and C.1(e)

of CHT). In this sense it is slightly stronger than the usual assumption for M-estimators, but

this rate is easy to determine in applications. For Model 1 and other models that satisfy the

conditions in Appendix B, we show that an = n1/2.

Theorem 1 (Consistency). Suppose that Assumptions A1–A3 hold and let τn be a nonnegative

sequence of random variables such that τn
p→ 0. Then, supθ∈Θ̂n

ρ(θ,Θ0)
p→ 0. Furthermore, if

anτn
p→∞, then limn→∞ P (Θ0 ⊆ Θ̂n) = 1 and dH(Θ̂n ,Θ0)

p→ 0.

The proof, along with other longer proofs and auxiliary results, is given in the appendix. Note

that the first conclusion of Theorem 1 actually holds without the slackness sequence: Θ̂n becomes

arbitrarily close to being a subset of Θ0 in probability for any τn = op (1) including τn = 0. The

2First, we note that Assumption A2 here plays a similar role as the upper (lower) semi-continuity of condition

C.1(b) of CHT but does not restrict the objective function outside of a neighborhood of the identified set. Second,

our assumption on the rate of uniform convergence is a simplified version of the CHT assumptions. We assume that

the rate of uniform convergence in probability of the objective function is known over the entire parameter space

(Assumption A3). On the other hand, CHT assume that the rate of (one-sided) uniform convergence in probability

on the entire parameter space is known (condition C.1(d)) and that the rate of uniform convergence in probability

over the identified set is also known but may be different (conditions C.1(e)). In CHT, these rates differ in the

moment inequality examples they consider. These rates are equal in the models we consider, allowing us the small

simplification of needing to introduce notation for only one rate.
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slackness sequence ensures that the other inclusion holds—that Θ̂n coversΘ0 in probability—by

expanding the contour sets by an amount which becomes negligible as n →∞. By expanding it

at the right rate—with τn converging to zero in probability, but not faster than 1/an—we ensure

that Θ̂n is large enough to cover Θ0 with probability approaching one. Combining these two

results yields consistency in the Hausdorff metric.

In the binary choice model with iid data, an = n1/2 and we can obtain a consistent estimator

by choosing τn to be a sequence which converges to zero slower than n−1/2. Permissible choices

are, for example, τn = p
lnn/n and τn = n−0.49. As we discuss in the next section, the rate of

convergence will be faster when τn is closer to being proportional to n−1/2. Hence, in our Monte

Carlo experiments we choose τn to be proportional to n−0.49 and consider different choices for

the constant of proportionality.3

Assumption C3 (Random Sampling). The sample consists of n independent observations from

the population distribution of observables.

Lemma 3. In Model 1 with either Assumption C1 or C2 and Assumption C3 for any sequence

τn
p→ 0 with n1/2τn

p→∞, dH(Θ̂n ,Θ0)
p→ 0.

3. Non-Standard Rates of Convergence

The rate of convergence of the Hausdorff distance dH(Θ̂n ,Θ0) is the slowest rate at which the

component distances in (3), supθ∈Θ0
ρ(θ,Θ̂n) and supθ∈Θ̂n

ρ(θ,Θ0), converge to zero. The second

part of Theorem 1 establishes that with only Assumptions A1–A3, the first distance equals zero

with probability approaching one. Thus, the rate of convergence of the second component

distance determines the overall rate.

For the binary choice model, the rate of convergence depends on whether Assumption C1

or C2 is satisfied. In the case of a continuous regressor, we use results of CHT to establish cube-

root consistency and then verify the conditions of Romano and Shaikh (2010) for constructing

confidence sets. In the case of only discrete regressors, our results for the binary choice model

are closely related to those of Komarova (2013). We verify that the criterion-function-based

estimator using the maximum score objective function has an arbitrarily fast rate of convergence

like the estimator based on the recursive linear programming procedure she developed. Our

contribution relative to her work is to show that arbitrarily fast convergence will arise more

generally in any model for which Q exhibits a discontinuity at the boundary of the identified set.

3Sequences such as n−0.49999 will yield a faster rate but the differences are small even for very large sample sizes.
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δ

Θ

Θ0

Op (a−γ2
n )

Qn(θ)

FIGURE 1. Polynomial majorant condition (Assumption A4) with γ1 = 2.

Note: Here Qn is bounded above in probability by a polynomial in ρ(θ,Θ0) outside of an Op (a−γ2
n ) neighborhood of

Θ0 and δ> 0 is a threshold below which the bound is relaxed.

3.1. Polynomial Rates of Convergence

In this section we consider models for which Qn satisfies a polynomial curvature condition

based on Condition C.2 of CHT. In particular, when Qn(θ) is stochastically bounded from above

by a polynomial in ρ(θ,Θ0) outside of a shrinking neighborhood of Θ0, we show that the rate

of convergence depends on the curvature of the bounding polynomial, the rate at which the

neighborhood shrinks, and the rate at which τn converges to zero.

Assumption A4 (Polynomial Majorant). There exist positive constants δ, c , γ1, and γ2 with γ1 > 1

and γ1γ2 ≥ 1 such that for ε ∈ (0,1) there are positive constants cε and nε such that for all n ≥ nε,

Qn(θ) ≤ sup
Θ

Q − c · (ρ(θ,Θ0)∧δ)γ1

uniformly on the set {θ ∈Θ : ρ(θ,Θ0) ≥ (cε/an)γ2 } with probability at least 1−ε.

Assumption A4 is a marginal relaxation of Condition C.2 of CHT needed to cover cases of

interest in this paper. In particular, their assumption is a special case of the above whereγ1 = 1/γ2.

In other words, to analyze Model 1 we must allow the degree of the bounding polynomial to differ

from the parameter determining the rate at which the sequence neighborhoods ofΘ0 shrinks.

As in the case of M-estimators for point identified models, this generalization allows for models

with non-standard rates of convergence (cf. van der Vaart, 1998, Theorem 5.52). As an example,

Figure 1 illustrates a possible quadratic bounding polynomial (γ1 = 2). As depicted in the figure,

δ is a threshold value below which the bound is relaxed.

Theorem 2 (Rate of Convergence with a Polynomial Majorant). Suppose that Assumptions A1–A4

hold. If τn
p→ 0 and anτn

p→∞, then dH(Θ̂n ,Θ0) =Op (τγ2
n ).
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Although the rate an does not appear explicitly in the conclusion of Theorem 2, the rate of

convergence of Θ̂n depends implicitly on an because the curvature and rate constants γ1 and

γ2 must be chosen relative to an in order to satisfy Assumption A4. To see this, note that if we

choose τn ≈ an then the rate of convergence is τγ2
n ≈ a−γ2

n .

To see why we need to allow γ1 6= 1/γ2, suppose for a moment that they are equal. Since the

objective function for the binary response model is approximately quadratic near the identified

set we have γ1 = 2 and so the equality requires γ2 = 1/2. Furthermore, for the binary choice

model we have an = n1/2. So, by Theorem 3.1 of CHT the rate of convergence of the set estimator

would be τ−γ2
n = τ−1/2

n , which can be nearly as fast as, but no faster than n−1/4 if we choose τn

appropriately. However, we can improve on this because the quadratic bound actually holds

outside of a sequence of neighborhoods that shrinks at the faster rate n−1/3 (i.e., a−γ2
n with

γ2 = 2/3) rather than the slower rate n−1/4 (i.e., a−γ2
n with γ2 = 1/2) at which we are restricted

to use when γ1 = 1/γ2. In other words, by allowing γ1 6= 1/γ2, we can show that the rate of

convergence is τ−2/3
n which can be made arbitrarily close to n−1/3.

3.2. Cube Root Consistency in the Semiparametric Binary Response Model

The properties of the maximum score objective function in the continuous covariate case have

been studied by Kim and Pollard (1990), Abrevaya and Huang (2005), and others. The following

lemma formalizes the cube-root consistency result for the set estimator for our model. Although

our assumptions are weaker overall, we still need to make additional assumptions on the distri-

bution of x, which, for comparison, are intentionally close to the assumptions of Abrevaya and

Huang (2005) and Horowitz (1992) in analyzing the model in the point identified case.

It is well known that θ is only identified up to scale, so we normalize the coefficient on the

last component of x, denoted θK , to be either 1 or −1 and consider estimation of β ∈Rk−1 where

θ = (β′,θK )′. Let x̃ denote the first K −1 components of x. Then x ′θ = x̃ ′β+xK . Being limited to

a finite set, we can estimate θK at a faster rate than the remaining components, so without loss

of generality we only consider the case where θK = 1. Therefore, for stating the following lemma

we abuse notation slightly by writing Q(β) =Q((β′,1)′). Accordingly, let B ⊂Rk−1, B0 ⊂ B , and B̂n

denote, respectively, the parameter space for β, the identified set, and the set estimator.

Lemma 4. Suppose that Assumptions C1 and C3 hold in Model 1. In addition, suppose:

a. The components of x̃ and x̃x̃ ′ have finite first absolute moments.

b. The function ∂ fxK |x̃(xK | x̃)/∂xK exists and for some M > 0,
∣∣ fxK |x̃(xK | x̃)/∂xK

∣∣ < M and

fxK |x̃(xK | x̃) < M for all xK and almost every x̃.

c. For all u in a neighborhood of 0, all xK in a neighborhood of −x̃ ′β0, almost every x̃, and some

M > 0, the function fu|x(u | x̃, xK ) exists and fu|x(u | x̃, xK ) < M.
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FIGURE 2. Constant majorant condition (Assumption A4’).

Note: Here Q has a discontinuity at the boundary ofΘ0 such that Q(θ) ≤ supΘQ −δ for some δ> 0.

d. For all u in a neighborhood of 0, all xK in a neighborhood of −x̃ ′β0, almost every x̃, and some

M > 0, the function ∂Fu|x(u | x̃, xK )/∂xK exists and
∣∣∂Fu|x(u | x̃, xK )/∂xK

∣∣< M.

e. B0 is compact and contained in the interior of B.

f. V (β) ≡ E
[
2 fu|x(0 | x̃,−x̃ ′β) fxK |x̃(−x̃ ′β | x̃)x̃ x̃ ′] is positive definite for all β ∈ bd(B0).

Then for any sequence τn such that τn
p→ 0 and n1/2τn

p→∞, dH(Θ̂n ,Θ0) =Op (τ2/3
n ).

3.3. Arbitrarily Fast Convergence

This section addresses a special case in which the limiting objective function Q is not continuous,

but has a discontinuity at the boundary of the setΘ0 as illustrated by Figure 2. This occurs, for

example, in Model 1 under Assumption C2 (discrete regressors), where Q is a step function. We

show that in such cases Θ̂n converges arbitrarily fast in probability to Θ0, as opposed to the

(potentially) non-standard but polynomial rates we found above.

Assumption A4’ (Constant Majorant). There exists a δ > 0 such that Q(θ) ≤ supΘQ −δ for all

θ ∈Θ\Θ0.

Theorem 3 (Rate of Convergence with a Constant Majorant). Suppose that Assumptions A1–A3

and A4’ hold. If τn
p→ 0 and anτn

p→∞, then Θ̂n =Θ0 with probability approaching one.

Thus, when Q exhibits a jump at the boundary of the identified set, the probability that the

estimate actually equals the identified set can be made arbitrarily close to one by choosing n

large enough. This is equivalent to saying that Θ̂n converges arbitrarily fast toΘ0. That is, for any

sequence rn , including powers of n and exponential forms, rndH(Θ̂n ,Θ0)
p→ 0.

Limiting objective functions satisfying Assumption A4’ arise, for example, when the regressors

are all discrete. Suppose, as in the binary choice model, that the objective function can be

expressed in terms of a class of real-valued functions F , where for each θ ∈Θ, Q(θ) = P f (·,θ)

13
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FIGURE 3. A realization of Qn and the partition ofΘ it generates.

Note: A step function Qn generates a finite number of contour set estimates Θ̂n given by ∪k
j=1Θ

j
n for k = 1, . . . ,4.

and Qn(θ) = Pn f (·,θ) for f (·,θ) ∈ F and where P and Pn denote, respectively, the population

and empirical measures of the observables. When the explanatory variables are discrete and the

functions in F are discontinuous, then Q may be discontinuous at the boundary of the identified

set. With a continuous regressor Q may be smooth even if the functions in F are discontinuous.

Intuitively, Theorem 3 states that with probability approaching one we are able to perfectly

distinguish values of θ that belong to Θ0 from those that do not. This happens because Qn is

converging uniformly to Q at a rate faster than the rate at which τn approaches zero, while at the

same time τn will eventually become smaller than δ, the size of the discrete jump. The result is

that the contour sets Cn(τn) become identically equal toΘ0 with probability approaching one.

Figure 3 illustrates the notion that, due to the discrete nature of Qn , there are only a finite

(though potentially very large) number of possible estimates Θ̂n . For the realization of Qn in the

figure, the contour sets determine a partition ofΘ into four disjoint sets: Θ=Θ1
n ∪Θ2

n ∪Θ3
n ∪Θ4

n .

Our set estimates are upper contour sets of Qn so there are four possible estimates: Θ1
n ,Θ1

n ∪Θ2
n ,

Θ1
n ∪Θ2

n ∪Θ3
n , and Θ1

n ∪Θ2
n ∪Θ3

n ∪Θ4
n . In higher dimensions, and for large sample sizes, the

combinatorics of the problem dictate that the number of possibilities becomes large very quickly.

On the other hand, as n →∞, the contour sets of Qn approach those of Q, and the collection of

possible estimates contains a set equal toΘ0 with probability approaching one.

For a more concrete example, consider the population objective function for the maximum

score estimator with discrete regressors:

(4) Q(θ) = Ex Ey |x
[
(2y −1)sgn

(
x ′θ

)]= ∑
x∈X

P (x)
[
2P (y = 1 | x)−1

]
sgn

(
x ′θ

)
.

The expectation becomes a sum of discontinuous functions of θ, so the population objective

function is a step function in this setting. The size of the jump near the identified set—the value δ

in Assumption A4’—is bounded below by the smallest nonzero value of
∣∣P (x)

[
2P (y = 1 | x)−1

]∣∣
for some x ∈X . Hence, the constant majorant condition holds for Model 1 under Assumption C2

and we can apply Theorem 3 to show that Θ̂n converges arbitrarily fast toΘ0.

14



Lemma 5. Suppose that Assumptions C2 and C3 hold in Model 1. For any sequence τn such that

τn
p→ 0 and n1/2τn

p→∞, then for all positive sequences rn →∞, rndH(Θ̂n ,Θ0)
p→ 0.

This is similar to Corollary 6.3 of Komarova (2013), who showed that in binary response

models with discrete regressors a linear-programming-based estimator converges in probability

in the Hausdorff metric at an arbitrarily fast rate. Hence, we have verified that the criterion-

function-based estimator using the maximum score objective function also converges arbitrarily

fast. Additionally, Theorem 3 isolates the source of this behavior and provides a condition

(Assumption A4’) under which other criterion-function-based estimators will have the same

property. Komarova (2013) also showed that the maximum score objective functions provides

a sharp characterization of the identified set when all regressors are discrete, considered infer-

ence on functions of the parameters (including individual components), and proposed several

solutions to deal with model misspecification issues.

Arbitrarily fast rates of convergence arise in other areas of econometrics. The situation is

similar to that of M-estimation with a finite parameter space, such as when estimating the sign of

a parameter, whereΘ= {−1,1}. For example, Andrews and Guggenberger (2008) illustrate a case

where the rate of convergence of the least squares estimator in a nearly-unit-root AR(1) model

is arbitrarily fast. Bhattacharya (2009) found an arbitrarily fast rate of convergence for a set

estimator in the context of treatment assignment problems where a large number of individuals

are optimally assigned to a finite number of treatments. As in other models, an alternative

asymptotic framework could yield a more typical, polynomial rate of convergence.4

3.4. Confidence Sets

We now consider the problem of constructing a sequence of confidence sets Bn for which

(5) liminf
n→∞ P (Θ0 ⊆ Bn) ≥ 1−α

for a given value of α. This is a complex problem in general, if the sets Bn are not restricted to be

members of a more tractable family of sets. As such, we focus on the case where Bn is a sequence

of upper contour sets of Qn . Under this restriction, the problem of choosing a sequence of

arbitrary sets is reduced to that of choosing a sequence of levels κn .

Now, the coverage of a particular contour set can be inferred using the following statistic, for

4For example, one might consider a setting where the size of the jump at the boundary of the identified set

in Assumption A4’, say δn , is shrinking with the sample size at some rate. To achieve both consistency and a

non-degenerate rate of convergence, it might also be necessary to let the support of the jump shrink towards the

identified set at some rate, much like the majorant condition in Assumption A4.
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some scaling sequence bn > 0 (discussed below):

(6) Rn ≡ bn

(
sup
Θ

Qn − inf
Θ0

Qn

)
.

This statistic is of interest because it can be related directly to the coverage probability. For any

sequence of levels κn we have

P (Θ0 ⊆Cn(κn/bn)) = P

(
inf
Θ0

Qn ≥ sup
Θ

Qn −κn/bn

)
= P (Rn ≤ κn) .

Thus, coverage probabilities of contour sets are related to quantiles of the distribution of Rn .

However, calculating these quantiles is problematic becauseΘ0 is unknown.

To obtain confidence sets, we will use subsampling to approximate quantiles of the limiting

distribution of Rn using the step-down procedure of Romano and Shaikh (2010, Algorithm

2.1). Their procedure requires neither an initial estimate of Θ0 nor a slackness sequence. Our

contribution is to establish that the appropriate scaling sequence is bn = n2/3 for the binary

choice model under Assumption C1. Under Assumption C2, in light of the arbitrarily fast rate of

convergence we recommend simply reporting the consistent set estimate itself.

Lemma 6. In Model 1 under the assumptions of Lemma 4 and with bn = n2/3:

i. Rn converges in distribution to R ≡ supβ∈bd(B0),t∈RK−1

[
W (β, t )− t ′V (β)t

]
where for each β ∈

bd(B0), W (β, ·) is a mean zero Gaussian process with almost surely continuous sample paths

and V (β) is a positive definite matrix (defined in condition f of Lemma 4).

ii. Algorithm 2.1 of Romano and Shaikh (2010) yields confidence sets Bn satisfying (5) for any

α< 1/2.

4. Monte Carlo Experiments

In this section, describe a series of Monte Carlo experiments5 for three different specifications of

the semiparametric binary choice model designed to both illustrate the asymptotic properties

derived above and to shed light on the finite sample properties. All specifications have two regres-

sors, the second of which is discrete in all cases. Specifications C1 and C2 have a continuous first

regressor while Specification D1 has a discrete first regressor. The first coefficient is normalized

to one in all cases, so we estimate β where θ = (1,β), β ∈ B is a scalar, and B ⊂ R denotes the

parameter space. Although β is a scalar here it would typically be a vector in practice.

Observations in our simulated samples are generated according to the model

yi = 1{x1i +β0x2i +ui ≥ 0}

5Fortran programs to reproduce our results are available at http://jblevins.org/research/cuberoot.
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(b) Specification C2

FIGURE 4. Objective functions: Q and one realization of Qn for n = 50.

where ui ∼ N(0,1). The parameter space is B = [−2,2]. We vary the distributions of x1 and x2 and

the population parameter β0 across the three specifications.

Specification C1, the first continuous-regressor specification, is a partially identified model

where x1 ∼ U(1,2), x2 ∼ U({−1,1}), and β0 =−1. That is, x1 has a continuous uniform distribution

on an interval and x2 has a discrete uniform distribution on a finite set. The identified set for this

specification is B0 = [−1,1]. The population objective function for this model, Q, is plotted in

Figure 4(a), along with one realization of the finite-sample objective function Qn for n = 50.

Specification C2 is identical to Specification C1 with the exception that the population param-

eter is β0 =−0.3. This results in the identified set B0 = {−0.3}, a singleton. The objective function

for this model is plotted in Figure 4(b). Clearly the population objective function is maximized at

a single point while the finite-sample objective function is a step function as before.

For each specification, we generated R = 1000 simulated data sets for each sample size

n ∈ {250,2000,16000,128000,1024000}. We use these datasets to produce set estimates and

confidence sets. We consider both small and very large sample sizes as a means of providing

simulation evidence for both the finite sample properties of the estimator as well as the asymp-

totic properties established above. We considered four choices for the slackness sequence τn .

The conditions for consistency require that τn tends to zero no faster than n−1/2. To achieve

the fastest rate of convergence, we should choose a sequence τn with a rate of convergence

close to n−1/2, but otherwise the choice of τn is arbitrary (i.e., we are free to vary the constant of

proportionality). For comparison, we choose three sequences that are proportional to n−0.49. The

fourth sequence is τn = 0, which corresponds to set estimators obtained by simply maximizing

the function (i.e., using a degenerate slackness sequence) that are not consistent in general.

We report estimates for Specifications C1 and C2 in Tables 1 and 2. The first column gives the

slackness sequences used, which we describe in more detail below. The second column reports
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TABLE 1. Estimates for Specification C1 for R = 1000 replications.

τn n Mean B̂n St. Dev. dH

n−0.49

250 [ -1.372, 0.914 ] [ 0.134, 0.523 ] 0.478

2000 [ -1.231, 0.999 ] [ 0.064, 0.203 ] 0.248

16000 [ -1.136, 1.007 ] [ 0.031, 0.002 ] 0.136

128000 [ -1.084, 1.002 ] [ 0.015, 0.001 ] 0.084

1024000 [ -1.051, 1.001 ] [ 0.007, 0.000 ] 0.051

Sn−0.49

250 [ -1.304, 0.673 ] [ 0.130, 0.795 ] 0.597

2000 [ -1.187, 0.857 ] [ 0.066, 0.540 ] 0.323

16000 [ -1.110, 0.988 ] [ 0.032, 0.179 ] 0.125

128000 [ -1.067, 0.997 ] [ 0.016, 0.090 ] 0.071

1024000 [ -1.041, 1.000 ] [ 0.007, 0.000 ] 0.041

Mn−0.49

250 [ -1.274, 0.602 ] [ 0.141, 0.843 ] 0.623

2000 [ -1.176, 0.844 ] [ 0.071, 0.558 ] 0.323

16000 [ -1.106, 0.986 ] [ 0.035, 0.190 ] 0.123

128000 [ -1.064, 0.997 ] [ 0.018, 0.090 ] 0.068

1024000 [ -1.039, 1.000 ] [ 0.009, 0.000 ] 0.039

0

250 [ -1.130, -0.688 ] [ 0.135, 0.859 ] 1.701

2000 [ -1.056, -0.808 ] [ 0.108, 0.673 ] 1.814

16000 [ -1.030, -0.819 ] [ 0.027, 0.621 ] 1.819

128000 [ -1.014, -0.726 ] [ 0.014, 0.708 ] 1.726

1024000 [ -1.007, -0.609 ] [ 0.007, 0.802 ] 1.609

Note: For β0 =−1 the identified set is B0 = [−1,1]. Mean B̂n denotes the average of the endpoints of B̂n , St. Dev.

denotes the standard deviations of the endpoints, and dH denotes the average Hausdorff distance dH(B̂n ,B0).

the sample size, which is increased by factors of eight. The third column reports the means of

the endpoints of the estimated intervals across all R = 1000 replications while the fourth column

reports the standard deviations of those endpoints. The last column gives the average Hausdorff

distance between the estimated sets and the identified set, dH(B̂n ,B0).

The first slackness sequence used is τn = n−0.49, where the constant of proportionality is one.

The second and third slackness sequences, which we refer to as Sn−0.49 and Mn−0.49 are chosen

by selecting the constants of proportionality to be equal to, respectively, the supremum of the

functional values over the parameter space and the median of the differences relative to the

maximum value. In practice, we use S ≡ supβ∈B Qn(β) and M ≡ supβ∈B Qn(β)−min
{
Qn(β j )

}J
j=1,

where the J grid points β j are uniformly spaced on B . These choices adapt the scale of the

slackness sequence to the scale of the functional values.6

6To give a better sense of the relative magnitudes of these sequences, here we report the average values of each

sequence across the R = 1000 experiments for n = 250. For this sample size, n−0.49 = 0.067 is the same for all three

specifications. The average values of the other sequences are, for C1, Sn−0.49 = 0.047 and Mn−0.49 = 0.067, for C2,

Sn−0.49 = 0.029 and Mn−0.49 = 0.042, and for D1, Sn−0.49 = 0.046 and Mn−0.49 = 0.036.
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TABLE 2. Estimates for Specification C2 for R = 1000 replications.

τn n Mean B̂n St. Dev. dH

n−0.49

250 [ -0.636, 0.031 ] [ 0.198, 0.171 ] 0.441

2000 [ -0.513, -0.091 ] [ 0.073, 0.080 ] 0.258

16000 [ -0.430, -0.172 ] [ 0.036, 0.035 ] 0.151

128000 [ -0.381, -0.220 ] [ 0.017, 0.017 ] 0.091

1024000 [ -0.350, -0.251 ] [ 0.008, 0.007 ] 0.054

Sn−0.49

250 [ -0.466, -0.131 ] [ 0.178, 0.183 ] 0.293

2000 [ -0.412, -0.195 ] [ 0.086, 0.091 ] 0.168

16000 [ -0.368, -0.232 ] [ 0.044, 0.040 ] 0.095

128000 [ -0.344, -0.256 ] [ 0.020, 0.020 ] 0.057

1024000 [ -0.328, -0.272 ] [ 0.009, 0.009 ] 0.034

Mn−0.49

250 [ -0.384, -0.208 ] [ 0.196, 0.177 ] 0.223

2000 [ -0.366, -0.243 ] [ 0.093, 0.093 ] 0.128

16000 [ -0.340, -0.259 ] [ 0.045, 0.044 ] 0.071

128000 [ -0.327, -0.273 ] [ 0.022, 0.022 ] 0.042

1024000 [ -0.318, -0.282 ] [ 0.010, 0.010 ] 0.025

0

250 [ -0.325, -0.269 ] [ 0.189, 0.188 ] 0.173

2000 [ -0.313, -0.297 ] [ 0.094, 0.095 ] 0.083

16000 [ -0.301, -0.297 ] [ 0.047, 0.047 ] 0.039

128000 [ -0.300, -0.299 ] [ 0.024, 0.024 ] 0.020

1024000 [ -0.300, -0.300 ] [ 0.011, 0.011 ] 0.009

Note: For β0 =−0.3 the identified set is B0 = {−0.3}. Mean B̂n denotes the average of the endpoints of B̂n , St. Dev.

denotes the standard deviations of the endpoints, and dH denotes the average Hausdorff distance dH(B̂n ,B0).

If the estimator is consistent for a particular choice of τn , then the Hausdorff distance should

converge to zero and the sequence of set estimates should converge to the identified set. All three

of the nonzero sequences are guaranteed to produce consistent estimates, but their finite sample

properties differ. Neither sequence appears to be uniformly better than the others. In small

samples, the sequence τn = n−0.49 performs worst for Specifications C2 and D1. The sequence

τn = Mn−0.49 performs worst for Specification C1 in small samples but best for large samples.

As expected, although the zero sequence yields consistent estimates for the point-identified

Specification C2 it results in inconsistent estimates for Specification C1. The sequence Sn−0.49

appears to be the most robust across the three specifications we consider, followed closely by

Mn−0.49. Yet, the fact that the performance is sensitive to the choice of τn is further motivation

for simply reporting confidence sets which can be calculated without using a slackness sequence.

According to our theoretical results for the continuous-regressor specifications, when the

slackness sequence is such that the estimator is consistent, it should converge at essentially
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TABLE 3. Coverage of confidence sets for Specifications C1 and C2 for R = 1000 replications.

Sample Size Specification C1 Specification C2

n 0.500 0.750 0.900 0.990 0.500 0.750 0.900 0.990

250 0.545 0.785 0.913 0.992 0.624 0.846 0.956 0.999

2000 0.576 0.798 0.914 0.989 0.601 0.833 0.953 0.995

16000 0.522 0.744 0.917 0.995 0.568 0.821 0.935 0.995

128000 0.473 0.771 0.887 0.989 0.538 0.774 0.902 0.987

1024000 0.502 0.795 0.894 0.988 0.613 0.794 0.912 0.994

Note: Columns represent different nominal coverage levels 1−α ∈ {0.5,0.75,0.9,0.99}.

the rate n−1/3. As a rule of thumb,7 with cube-root consistency when increasing the sample

size by factors of eight the Hausdorff distance should decrease by approximately half for the

sequences proportional to n−0.49. For Specification C1, reported in Table 1, we find that indeed,

the estimates appear to be consistent approximately at the cube root rate when the slackness

sequence is used. The estimator appears to be inconsistent without the slackness sequence.

For Specification C2, which is actually point identified, we can see from Table 2 that the

estimator is consistent even for τn = 0, which is expected given the consistency of the maximum

score point estimator. The benefits of formally treating the maximum score estimator as a set

estimator are the additional robustness to cases where the support condition may not be satisfied

and the avoidance of an ad hoc selection rule for choosing a point from the set that maximizes

the sample criterion function. The entire set is treated as the estimate since there is usually no a

priori reason to prefer any particular point. As before, for sequences proportional to τn = n−0.49

we can see that the estimator achieves approximate cube-root convergence since increasing the

sample size eight-fold roughly halves the average Hausdorff distance.

Next, we evaluate the performance of the step-down procedure of Romano and Shaikh (2010).

These results are reported in Table 3 for both Specifications C1 and C2. For each sample size and

each simulated sample we approximate the limiting distribution of Rn using Algorithm 2.1 of

Romano and Shaikh (2010) with 1000 subsamples. For sample sizes n = 250,2000,16000,1024000

we use subsample sizes m = 10,20,30,40, respectively.8 We then choose the appropriate quantile

for each nominal level 1−α ∈ {0.50,0.75,0.90,0.99}. We obtain 1000 confidence sets for each level

(one for each simulated sample) and report the coverage frequencies.

In practice, choosing the block size m for subsampling is important to achieve the nominal

coverage desired. We experimented with several other choices for the block size. The results

7Let d H,n denote the average Hausdorff distance between Θ̂n andΘ0. Approximate cube-root consistency implies

n1/3d H,n ≈C for some constant C . Solving for d H,n and comparing for n and 8n yields d H,8n = 1
2 d H,n .

8When the sample size n increases by a factor of 8 the subsample size m only increases linearly so the required

condition, m →∞ and m/n → 0, is satisfied for the sequence chosen.
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FIGURE 5. Objective functions: Q and one realization of Qn for Specification D1 for n = 50.

for the sequence m = 5,10,15,20 were similar to those reported (for m = 10,20,30,40). For

sequences with larger values (e.g., m = 50,200,800,3200) the resulting confidence sets tended to

become more conservative, thus still satisfying (5). In practice, one can also allow the block size

to be data-dependent as discussed by Politis, Romano, and Wolf (1999, Chapter 9).

Finally, we consider Specification D1 which has only discrete regressors. The regressors are

distributed as x1 ∼ U({−2,−1,0,1,2}), x2 ∼ U({−2,−1,0,1,2}), and β0 = −0.3. In this case, the

identified set is B0 = [−0.5,0]. The objective function is plotted in Figure 5 and the estimates

are reported in Table 4. As expected, we have arbitrarily fast convergence, with the Hausdorff

distance being essentially zero for sample sizes n ≥ 2000.

5. Conclusion

This paper has developed several asymptotic properties for criterion-function-based set estima-

tors for semiparametric binary choice models without the need to impose support conditions

on the regressors. We also provide new sufficient conditions for estimators of this kind in more

general models which may exhibit non-standard behavior, such as cube-root consistency or

arbitrarily fast consistency. A series of Monte Carlo results illustrates the theoretical results and

provides insights into the practical finite sample behavior of the estimator.

Our results provide a basis for deriving the properties of set estimators for other models

and suggest several areas for future work in this literature. For example, although we do not

consider it explicitly here, the results could be applied to the closely-related multinomial choice

model of Manski (1975) and other models based on similar rank conditions. Finally, our Monte

Carlo results suggest that further study of data-driven procedures for selecting the constant of

proportionality in the slackness sequence is an important topic for future work.
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TABLE 4. Estimates for Specification D1 for R = 1000 replications.

τn n Mean B̂n St. Dev. dH

n−0.49

250 [ -0.852, 0.104 ] [ 0.228, 0.203 ] 0.387

2000 [ -0.506, 0.000 ] [ 0.059, 0.000 ] 0.007

16000 [ -0.500, 0.000 ] [ 0.000, 0.000 ] 0.000

128000 [ -0.500, 0.000 ] [ 0.000, 0.000 ] 0.000

1024000 [ -0.500, 0.000 ] [ 0.000, 0.000 ] 0.000

Sn−0.49

250 [ -0.734, 0.046 ] [ 0.251, 0.148 ] 0.263

2000 [ -0.501, 0.000 ] [ 0.027, 0.000 ] 0.002

16000 [ -0.500, 0.000 ] [ 0.000, 0.000 ] 0.000

128000 [ -0.500, 0.000 ] [ 0.000, 0.000 ] 0.000

1024000 [ -0.500, 0.000 ] [ 0.000, 0.000 ] 0.000

Mn−0.49

250 [ -0.625, 0.021 ] [ 0.223, 0.131 ] 0.149

2000 [ -0.500, 0.000 ] [ 0.000, 0.000 ] 0.000

16000 [ -0.500, 0.000 ] [ 0.000, 0.000 ] 0.000

128000 [ -0.500, 0.000 ] [ 0.000, 0.000 ] 0.000

1024000 [ -0.500, 0.000 ] [ 0.000, 0.000 ] 0.000

0

250 [ -0.543, -0.021 ] [ 0.160, 0.140 ] 0.059

2000 [ -0.500, 0.000 ] [ 0.000, 0.000 ] 0.000

16000 [ -0.500, 0.000 ] [ 0.000, 0.000 ] 0.000

128000 [ -0.500, 0.000 ] [ 0.000, 0.000 ] 0.000

1024000 [ -0.500, 0.000 ] [ 0.000, 0.000 ] 0.000

Note: For β0 =−0.3 the identified set is B0 = [−0.5,0]. Mean B̂n denotes the average of the endpoints of B̂n , St. Dev.

denotes the standard deviations of the endpoints, and dH denotes the average Hausdorff distance dH(B̂n ,B0).
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A. Proofs of Results for General Models

We begin with some definitions and a preliminary result regarding absolute values of functions. Let B c

denote the complement of a set B in Θ. In a slight abuse of notation, we also write Bε to denote an

ε-expansion of a set B in Θ, defined as Bε ≡ {θ ∈Θ : ρ(θ,B) ≤ ε}. We write a ∨b to denote max{a,b} and

a ∧b to denote min{a,b}.

Lemma 7. Let f and g be bounded real functions on A ⊂Rn . Then∣∣∣∣sup
x∈A

f (x)− sup
x∈A

g (x)

∣∣∣∣≤ sup
x∈A

∣∣ f (x)− g (x)
∣∣ .
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Proof of Lemma 7.

sup
x∈A

∣∣ f (x)− g (x)
∣∣= sup

x∈A

[
( f (x)− g (x))∨ (g (x)− f (x))

]
= sup

x∈A
[ f (x)− g (x)]∨ sup

x∈A
[g (x)− f (x)]

≥ sup
x∈A

[
f (x)− sup

y∈A
g (y)

]
∨ sup

x∈A

[
g (x)− sup

y∈A
f (y)

]

=
[

sup
x∈A

f (x)− sup
x∈A

g (x)

]
∨

[
sup
x∈A

g (x)− sup
x∈A

f (x)

]
=

∣∣∣∣sup
x∈A

f (x)− sup
x∈A

g (x)

∣∣∣∣ .

■

Proof of Theorem 1. The proof proceeds in two steps. We first show that supθ∈Θ̂n
ρ(θ,Θ0)

p→ 0. Then, we

show that limn→∞ P (Θ0 ⊂ Θ̂n) = 1, which implies that supθ∈Θ0
ρ(θ,Θ̂n)

p→ 0. Combining these steps and

using the definition of the Hausdorff distance yields the final result.

Step 1 Let η> 0 and ε> 0 be given. Uniform convergence in probability of Qn to Q overΘ (Assumption A3)

also implies uniform convergence in probability overΘ\Θη0 , so we have both supΘ |Qn −Q| =Op (1/an)

and supΘ\Θη0
|Qn −Q| = Op (1/an). Under Assumption A2, there exists a δη > 0 such that supΘ\Θη0

Q ≤
supΘQ −δη. Combining the above, we have

sup
Θ\Θη0

Qn ≤ sup
Θ\Θη0

Q +Op (1/an) ≤ sup
Θ

Q −δη+Op (1/an) ≤ sup
Θ

Qn −δη+Op (1/an).

Recall that by definition of Θ̂n , infΘ̂n
Qn ≥ supΘQn−τn . Since δη > 0 is constant and τn = op (1), there exists

an integer nε such that for all n ≥ nε with probability at least 1−εboth the Op (1/an) term and τn are smaller

than δη/2 and so −δη+Op (1/an) < −δη/2 < −τn . Therefore, for n ≥ nε, we have infΘ̂n
Qn > supΘ\Θη0

Qn

which implies Θ̂n ⊆Θη0 which in turn implies supθ∈Θ̂n
ρ(θ,Θ0) ≤ η, all with probability at least 1−ε. Since

ε and η were arbitrary, supθ∈Θ̂n
ρ(θ,Θ0)

p→ 0.

Step 2 By definition of Θ̂n , if supΘQn − infΘ0 Qn < τn , thenΘ0 ⊆ Θ̂n . We have

sup
Θ

Qn − inf
Θ0

Qn =
[

sup
Θ

Qn − sup
Θ

Q

]
+

[
sup
Θ

Q − inf
Θ0

Qn

]
≤

∣∣∣∣sup
Θ

Qn − sup
Θ

Q

∣∣∣∣+ ∣∣∣∣sup
Θ

Q − inf
Θ0

Qn

∣∣∣∣
=

∣∣∣∣sup
Θ

Qn − sup
Θ

Q

∣∣∣∣+ ∣∣∣∣inf
Θ0

Q − inf
Θ0

Qn

∣∣∣∣
≤ sup

Θ
|Qn −Q|+ sup

Θ0

|Qn −Q|

≤ 2sup
Θ

|Qn −Q| .
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These steps follow by (1) adding and subtracting supΘQ, (2) taking the absolute value, (3) noting thatΘ0

maximizes Q, (4) using the fact that inf f =−sup(− f ) and applying Lemma 7 twice, and (5) recalling that

Θ0 ⊆Θ. By Assumption A3, 2supΘ |Qn −Q| =Op (1/an). Finally, the condition that τn approaches zero in

probability slower than 1/an implies supΘQn − infΘ0 Qn < τn with probability approaching one. ■

Proof of Theorem 2. Let ε> 0 be given and let δ, c, γ1, γ2, cε, and nε satisfy Assumption A4. Let an satisfy

Assumption A3 and define

νn ≡
(

c1cε∨2τn an

anc1

)1/γ1

.

There exists an n′
ε ≥ nε such that for all n ≥ n′

ε, with probability at least 1−ε each of the following are true:

(a) νn ≥ (cε/an)γ2 , (b) νn ≤ δ, and (c) supΘ |Qn −Q| ≤ τn . Condition (a) holds since γ1γ2 ≥ 1 and so for

sufficiently large n with probability at least 1−ε

ν
1/γ2
n ≥

(
cε
an

) 1
γ1γ2 ≥ cε

an
.

Condition (b) follows because νn = op (1), due to the assumptions on τn and an , and the fact that δ is

a strictly positive constant. Condition (c) follows from Assumption A3, under which supΘ |Qn −Q| =
Op (1/an), and the condition anτn

p→∞. Therefore, for all n ≥ n′
ε, with probability at least 1−ε,

sup
Θ\Θνn

0

Qn <
(1)

sup
Θ

Q − c1(νn ∧δ)γ1 ≤
(2)

sup
Θ

Q − c1ν
γ1
n ≤

(3)
sup
Θ

Q −2τn ≤
(4)

sup
Θ

Qn −τn ≤
(5)

inf
Θ̂n

Qn .

Inequality (1) holds by Assumptions A2 and A4 and condition (a) under which ρ(θ,Θ0) > νn ≥ (cε/an)γ2

for θ ∈Θ \Θνn
0 . Inequality (2) is a direct result of condition (b). Inequality (3) holds by definition of νn ,

since c1ν
γ1
n ≥ 2τn . Inequality (4) follows from condition (c). Inequality (5) follows by definition of Θ̂n .

It follows that for n ≥ n′
ε, with probability at least 1−ε, the set Θ̂n ∩ (Θ \Θνn

0 ) is empty, or equivalently,

Θ̂n ⊆Θνn
0 . Finally, recall that by Theorem 1 we have limn→∞ P (Θ0 ⊆ Θ̂n) = 1. Therefore, for all n ≥ n′

ε, with

probability at least 1−ε, dH(Θ̂n ,Θ0) ≤ νn and hence dH(Θ̂n ,Θ0) =Op (τγ2
n ). ■

Proof of Theorem 3. First, note that that Assumption A4’ implies Assumption A2. Then, from Theorem 1

we have limn→∞ P (Θ0 ⊆ Θ̂n) = 1. We will prove the result by showing that limn→∞ P (Θ̂n ⊆ Θ0) = 1 and

therefore the Hausdorff distance dH(Θ̂n ,Θ0) equals zero with probability approaching one. The logic is

very similar to that used in Step 1 of the proof of Theorem 1, but without expanding the setΘ0. We have

sup
Θ\Θ0

Qn ≤ sup
Θ\Θ0

Q +Op (1/an) ≤ sup
Θ

Q −δ+Op (1/an) ≤ sup
Θ

Qn −δ+Op (1/an),

where the first and last inequalities follow from Assumption A3 and the middle inequality follows from

Assumption A4’, the constant majorant condition. Since τn = op (1) and δ> 0 is constant, with probability

approaching one we have τn < δ/2 and Op (1/an) < δ/2, leading to supΘ\Θ0
Qn < supΘQn −τn ≤ infΘ̂n

Qn ,

and therefore, Θ̂n ⊆Θ0. ■
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B. Sufficient Conditions

This section derives sufficient conditions which may be easier to verify than the conditions of the theorems

in the main text. Many of these conditions are stated in terms of empirical process concepts—they are

restrictions on the indexing class of functions which generate the finite sample and population objective

functions. We briefly summarize some standard notation and definitions below, but refer the reader to

Section 2 of Pakes and Pollard (1989) for details.

Let P be the joint distribution of all observables, denoted Z . We shall maintain Assumption C3, that n

iid observations of Z are available for use in estimation. Let Pn denote the associated empirical measure.

Let `∞(B) denote the space of uniformly bounded real-valued functions f : B →R on an arbitrary set B

endowed with the uniform metric d∞( f , g ) = supb∈B

∣∣ f (b)− g (b)
∣∣ for f , g ∈ `∞(B).

We focus here on models for which the objective functions can be expressed in terms of a class of

real-valued functions F , where for each θ ∈ Θ, Q(θ) = P f (·,θ) and Qn(θ) = Pn f (·,θ) for f (·,θ) ∈ F . As

such, we work with empirical processes indexed by classes of functions F = { f (·,θ) : θ ∈Θ}. Alternatively,

we use parameter space Θ as the indexing set when convenient. Note that this assumption does not

include objective functions of the kind considered by CHT and Bugni (2010), where Q = ∥∥P f (·,θ)
∥∥

W (θ) for

some appropriate weighting matrix W (θ), or any of the functions proposed by Andrews and Soares (2010)

and related papers. Additionally, the objective functions we consider are not scale invariant, which can be

problematic in moment inequality models (cf. Andrews and Soares, 2010, Assumption 1(b)).

Each such model has a different indexing class F . An envelope for F is a function F such that

supF

∣∣ f
∣∣ ≤ F . Let Gn = p

n(Pn −P ) denote the standardized empirical process indexed by F . Note

that P , Pn , and Gn all map classes F to functions in `∞(Θ). We work under conditions below, such as

manageability of F , that are sufficient for F to be P-Donsker, meaning that Gn G in `∞(F ), where

 denotes weak convergence and G is a mean-zero Gaussian process indexed by F with almost surely

continuous sample paths and covariance E[ f (Z )g (Z )]−E[ f (Z )] ·E[g (Z )] for all f , g ∈F .

B.1. Sufficient Conditions for Consistency

Assumption B1. Θ is a nonempty, compact subset of RK and there exists a class of real-valued functions

F = { f (·,θ) : θ ∈Θ} such that Q(θ) = P f (·,θ) and Qn(θ) = Pn f (·,θ) for all θ ∈Θ.

Assumption B2. Q is piecewise continuous onΘ.

Assumption B3. F is manageable for some envelope F such that PF 2 <∞.

Lemma 8. Suppose that Assumptions B1–B3 hold. Then Assumptions A1–A3 hold with an = n1/2.

Proof of Lemma 8. Compactness of Θ implies Assumption A1 and piecewise continuity of Q implies

Assumption A2. Since F is manageable with PF 2 <∞, it follows from Corollary 3.2 of Kim and Pollard

(1990) that Assumption A3 holds with an = n1/2. ■
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Hence, under Assumptions B1–B3, Θ̂n is consistent in the sense of Theorem 1. Under piecewise

continuity (Assumption B2), Q may have only a finite number of pieces. This property is not always

immediate, but it can be shown in some cases using the uniform law of large numbers when f (·,θ) is

continuous in θ with probability one and dominated by some bounded function F (Newey and McFadden,

1994, Lemma 2.4). Furthermore, Assumption B3 is satisfied in models where F is a Vapnik-Chervonenkis

(VC) subgraph class, in the sense of Dudley (1987), with constant envelope F <∞. In particular, if F is

a class of functions such that {subgraph( f ) : f ∈F } is a VC class of sets and supF

∣∣ f
∣∣≤ F <∞, then F is

necessarily manageable and PF 2 <∞. The following lemma formalizes these results.

Lemma 9. Suppose that Assumption B1 holds. If F is a VC subgraph class such that
∣∣ f (·,θ)

∣∣≤ M for all

θ ∈Θ for the constant function M <∞, then Assumption B3 holds. In addition, if f (·,θ) is continuous in θ

with probability one, then Assumption B2 holds.

Proof of Lemma 9. Since F is a VC subgraph class, Lemma 2.12 of Pakes and Pollard (1989) implies that

F is Euclidean in the sense of Nolan and Pollard (1987, Definition 8) for any valid envelope including

F = M . Since F is Euclidean, it is also manageable for F = M (cf. Pakes and Pollard, 1989, p. 1033). Since

PF 2 = M 2 <∞, this verifies Assumption B3. Furthermore, if f (·,θ) is continuous in θ with probability one,

since it is dominated by F = M for all θ, continuity of Q follows from Lemma 2.4 of Newey and McFadden

(1994), verifying Assumption B2. ■

B.2. Sufficient Conditions for Cube Root Convergence

Assumption B4. There exists a neighborhoodΘη1

0 ofΘ0 with η1 > 0 and a positive constant c such that

Q(θ) ≤ supΘQ − cρ2(θ,Θ0) for all θ ∈Θη1

0 .

Assumption B5. There exists a positive constant η2 such that for all η ≤ η2, the classes Fη ≡ { f (·,θ) :

ρ(θ,Θ0) ≤ η} are uniformly manageable with PF 2
η = O(η), where Fη(·) ≡ supFη

∣∣ f (·,θ)
∣∣ is the natural

envelope of Fη.

Theorem 4. Suppose that Assumptions B1-B5 hold. Let rn = o(n1/3) and choose τn ∝ r−3/2
n . Then

dH(Θ̂n ,Θ0) =Op (r−1
n ).

Proof of Theorem 4. We will verify the conditions of Theorem 2. By Lemma 8, Assumptions B1–B3 imply

Assumptions A1–A3 with an = n1/2. It remains to verify Assumption A4. We will use the following

notational conventions: η’s denote distances in Θ, δ’s denote distances between functional values, ε’s

denote arbitrarily small probabilities, and κ’s denote various constants.

By definition of Gn(θ), we can always write

(7) Qn(θ) = (Pn −P ) f (·,θ)+P f (·,θ) = n−1/2Gn(θ)+Q(θ).

Let η1 and η2 satisfy Assumptions B4 and B5 and choose η to be smaller than the minimum of η1 and η2.

Then from Assumption A2 there exists a δη > 0 such that

(8) sup
Θ\Θη0

Q ≤ sup
Θ

Q −2δη.
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Combining (7) and (8) and using Assumption A3 gives, for all θ ∈Θ\Θη0 ,

Qn(θ) ≤ n−1/2Gn(θ)+ sup
Θ

Q −2δη.

F is P-Donsker by Assumption B3 and since supΘ |·| is continuous in `∞(Θ), supΘ |Gn(θ)| = Op (1)

by the continuous mapping theorem. It follows that for any ε1 ∈ (0,1) there exists an n1 such that for all

n ≥ n1,

(9) Qn(θ) ≤ sup
Θ

Q −δη

uniformly onΘ\Θη0 with probability at least 1−ε1.

Now, by Assumption B4, there is a neighborhoodΘη1

0 ofΘ0 such that Q is approximately quadratic in

the directed distance ρ(θ,Θ0). That is, for some κ1 > 0, Q(θ) ≤ supΘQ−κ1ρ
2(θ,Θ0) for all θ ∈Θη1

0 . Similarly,

by Assumption B5 and Lemma 4.1 of Kim and Pollard (1990), for all κ2 > 0 there exists a sequence of

random variables Mn =Op (1) such that

(10)
∣∣(Pn −P ) f (·,θ)

∣∣≤ κ2ρ
2(θ,Θ0)+n−2/3M 2

n

for θ ∈Θη2

0 . Combining these results for κ2 = κ1/2 and using (7) and Assumption A3 yields

Qn(θ) ≤ sup
Θ

Q − κ1

2
ρ2(θ,Θ0)+n−2/3M 2

n for all θ ∈Θη1∧η2

0 .

Notice that when n−2/3M 2
n is smaller than (κ1/4)ρ2(θ,Θ0), we have

(11) Qn(θ) ≤ sup
Θ

Q − κ1

4
ρ2(θ,Θ0),

which is of the form required by Assumption A4. This is true whenever ρ(θ,Θ0) ≥ 4κ−1/2
1 n−1/3Mn . Since

Mn = Op (1), for any ε3 ∈ (0,1), there exists a κ3 and n3 such that for all n ≥ n3, ρ(θ,Θ0) ≥ κ3n−1/3 ≥
4κ−1/2

1 n−1/3Mn and the bound in (11) holds uniformly on Θη0 \Θκ3n−1/3

0 with probability at least 1− ε3.

(Note that we can always choose n3 large enough so that κ3n−1/3 is smaller than η< η1 ∧η2, ensuring that

the relevant region of the domain is nonempty.)

To show that Assumption A4 holds, let ε ∈ (0,1) be given. For ε1 = ε/2, choose n1 and δη as above so

that (9) holds uniformly on Θ \Θη0 with probability at least 1−ε1. Then, for ε3 = ε/2, choose n3 and κ3

such that (11) holds uniformly onΘη0 \Θκ3n−1/3

0 with probability at least 1−ε3.

To summarize, we have shown that

Qn(θ) ≤ sup
Θ

Q −max
{κ1

4
ρ2(θ,Θ0),δη

}
uniformly onΘ\Θκ3n−1/3

0 with probability at least 1−ε. It follows that Assumption A4 holds with an = n1/2,

δ = δη, c = κ1/4, γ1 = 2, γ2 = 2/3, cε = κ3, and nε = max{n1,n3}. Therefore, for any sequence rn such

that rn = o(n1/3), let τn ∝ r−3/2
n . Since n1/3r−1

n →∞, we have (n1/3r−1
n )3/2 = n1/2r−3/2

n ∝ n1/2τn
p→∞ and

therefore Theorem 2 implies dH(Θ̂n ,Θ0) =Op (τ2/3
n ) =Op (r−1

n ). ■
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B.3. Sufficient Conditions for Arbitrarily Fast Convergence

Lemma 10. Suppose that Assumptions B1–B3 hold and that Q is a step function. If τn
p→ 0 and n1/2τn

p→∞,

then for any positive sequence rn with rn →∞, rndH(Θ̂n ,Θ0)
p→ 0.

Proof of Lemma 10. As established by Lemma 8, Assumptions B1–B3 are sufficient for Assumptions A1–A3

with an = n1/2. Since Q is a step function, Assumption A4’ holds for all δ< supΘQ − supΘ\Θ0
Q. The result

follows from Theorem 3. ■

C. Proofs of Results for the Semiparametric Binary Response Model

Proof of Lemma 3. We verify the conditions of Lemma 8 with an = n1/2. Since Θ is compact, Assump-

tion B1 is verified. Q is continuous when Assumption C1 holds and Q is a step function when Assump-

tion C2 holds, so Assumption B2 is satisfied. It remains to verify Assumption B3.

Let α,γ ∈ R and δ ∈ RK . For each (x, y, t) ∈ X × {0,1}×R, define g (x, y, t ;α,γ,δ) = αt +γy +δ′x and

G = {g (·, ·, ·;α,γ,δ) : α,γ ∈ R and δ ∈ RK }. Since G is a finite-dimensional vector space of real-valued

functions on X × {0,1}×R, classes of sets of the form {g ≥ r } or {g > r } with g ∈G and r ∈R are VC classes

(Pakes and Pollard, 1989, Lemma 2.4). We will use particular choices of α, γ, and δ to show that F is VC

subgraph class. First, note that we can rewrite f as

f (x, y,θ) = (
1{y > 0}−1{y ≤ 0}

)(
1{x ′θ ≥ 0}−1{x ′θ < 0}

)
= 1{y > 0, x ′θ ≥ 0}−1{y > 0, x ′θ < 0}−1{y ≤ 0, x ′θ ≥ 0}+1{y ≤ 0, x ′θ < 0}.

For any θ ∈Θ,

subgraph
(

f (·, ·,θ)
)= {

(x, y, t ) ∈X × {0,1}×R : 0 < t < f (x, y,θ) or 0 > t > f (x, y,θ)
}

= (
{y > 0}∩ {x ′θ ≥ 0}∩ {t ≥ 1}c ∩ {t > 0}

)
∪ (

{y > 0}∩ {x ′θ ≥ 0}c ∩ {t >−1}∩ {t ≥ 0}c)
∪ (

{y ≥ 0}c ∩ {x ′θ ≥ 0}∩ {t >−1}∩ {t ≥ 0}c)
∪ (

{y ≥ 0}c ∩ {x ′θ < 0}∩ {t ≥ 1}c ∩ {t > 0}
)

.

Now, we construct three functions of the form g j (x, y, t) = α j t +γ j z +δ′j x with g j ∈ G for j = 1,2,3 by

choosing α1 = 0, γ1 = 1, δ1 = 0, α2 = 0, γ2 = 0, δ2 = θ, α3 = 1, γ3 = 0, and δ3 = 0. Then

subgraph
(

f (·, ·,θ)
)= (

{g1 > 0}∩ {g2 ≥ 0}∩ {g3 ≥ 1}c ∩ {g3 > 0}
)

∪ (
{g1 > 0}∩ {g2 ≥ 0}c ∩ {g3 >−1}∩ {g3 ≥ 0}c)

∪ (
{g1 ≥ 0}c ∩ {g2 ≥ 0}∩ {g3 >−1}∩ {g3 ≥ 0}c)

∪ (
{g1 ≥ 0}c ∩ {g2 < 0}∩ {g3 ≥ 1}c ∩ {g3 > 0}

)
.

Since sets of the form {g ≥ 0} or {g > 0} for g ∈ G are VC classes and since this property is preserved

over complements, unions, and intersections (Pakes and Pollard, 1989, Lemma 2.5), it follows that
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{subgraph( f ) : f ∈ F } is a VC class. By Lemma 2.12 of Pakes and Pollard (1989), F is Euclidean for

every envelope including F = 1. Since F is Euclidean it is also manageable in the sense of Pollard (1989)

(cf. Pakes and Pollard, 1989, p. 1033), verifying Assumption B3. ■

Proof of Lemma 4. Following Abrevaya and Huang (2005), we re-normalize the objective function using

f (x, y,β) = (2y−1)(1{x̃ ′β+xK ≥ 0}−1{x̃ ′β̄+xK ≥ 0}) for some β̄ ∈ B0. Assumptions B1–B3 hold by Lemma 3.

We verify Assumptions B4 and B5 here and appeal to Theorem 4 to establish the rate.

Under assumptions a–f, it follows from Abrevaya and Huang (2005, p. 1200) that ∇ββ′ Q(β) =−V (β)

for all β ∈ bd(B0). Therefore, in a neighborhood N of B0, Q is approximately quadratic and for some c > 0,

Q(β) ≤ supQ − cρ2(β,B0). This verifies Assumption B4.

To show that Assumption B5 holds, let η > 0 and define Fη ≡ { f (·,β) ∈ F : ρ(β,B0) ≤ η}. We will

show that the natural envelope Fη of Fη is such that PF 2
η = O(η). First, note that by definition of Fη if

f (·,β) ∈Fη, then β ∈ Bη
0 . Then,

Fη(x, y) = sup
β∈Bη

0

∣∣ f (x, y,β)
∣∣= sup

β∈Bη
0

∣∣1{x̃ ′β≥−xK > x̃ ′β̄}+1{x̃ ′β̄≥−xK > x̃ ′β}
∣∣

≤ sup
β∈Bη

0

1
{−‖x̃‖ ·∥∥β− β̄∥∥≤ x̃ ′β̄+xK ≤ ‖x̃‖ ·∥∥β− β̄∥∥}

.

Now, for all β ∈ Bη
0 and β̄ ∈ B0, we have∥∥β− β̄∥∥≤ ρ(β,bd(B0))+dH(bd(B0), int(B0)) ≤ η+δ

where δ≡ dH(bd(B0), int(B0)). Therefore Fη(x, y) ≤ 1
{−(η+δ)‖x̃‖ ≤ x̃ ′β̄+xK ≤ (η+δ)‖x̃‖} and

PF 2
η ≤

∫
X̃

∫
{

xK ∈XK :−(η+δ)‖x̃‖≤x̃ ′β̄+xK ≤(η+δ)‖x̃‖} dFxK |x̃ (xK | x̃)dFx̃ (x̃)

≤ 2(η+δ)
∫
X̃

sup
xK ∈XK

fxK |x̃ (xK | x̃) · ‖x̃‖ dFx̃ (x̃).

Since x̃ has finite first absolute moments (assumption a), fxK |x̃ (xK | x̃) is finite for almost every x̃ (assump-

tion b), and δ<∞ since B0 is compact (assumption e), we have PF 2
η =O(η). ■

Proof of Lemma 6. We verify the conditions of Theorem 2.2 of Romano and Shaikh (2010) by showing that

Rn converges in distribution to R and that the distribution of R is continuous at the 1−α quantile.

Recall that the binary choice model the parameter vector θ is normalized up to scale so that θ = (β′,θK )′

for β ∈ B and θK ∈ {−1,1}. As in the proof of Theorem 4, we use the re-normalized objective function

Qn(β) = Pn f (·,β) for f (·,β) ∈ F so that f (·,β) = 0 for β ∈ B0. We can restate the inferential statistic as

Rn = n2/3 supβ∈B Qn(β)−n2/3 infβ∈B0 Qn(β).

It follows from a slight extension of Lemma 4.1 of Kim and Pollard (1990), following the proof of Lemma

B.14 of Wan and Xu (2015), that infβ∈B0 Qn(β) = op (n−2/3). Hence, Rn = supβ∈B n2/3Qn(β)+op (1). From

(11) in the proof of Theorem 4 above, there exists a κ > 0 such that supβ∈B Qn(β) = sup
β∈B0

κn−1/3 Qn(β)

with probability approaching one. Hence, we focus on rescaled parameter sequences β = β̄+ tn−1/3

for β̄ ∈ bd(B0) and t ∈ RK−1. We use the following decomposition to analyze the remaining term of Rn :
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n2/3Qn(β̄+ tn−1/3) = n2/3P f (·, β̄+ tn−1/3)+n2/3(Pn −P ) f (·, β̄+ tn−1/3). The analysis is again similar to

the arguments of Kim and Pollard (1990, Theorem 4.7) and Wan and Xu (2015, Lemma B.13). By condition

f of Lemma 4, the first component contributes a quadratic trend: n2/3P f (·, β̄+ tn−1/3) →−t ′V (β̄)t . The

second component converges in distribution to a mean-zero Gaussian process W (β̄, ·) with covariance

kernel H(β̄, t1, t2) = limn→∞ nP f (·, β̄+ t1/n) f (·, β̄+ t2/n).

Finally, by Theorem 11.1 of Davydov, Lifshits, and Smorodina (1998), the distribution of R is continuous

except possibly at the separation point r0 = inf{r | Pr(R ≤ r ) > 0}. For some (β̄, t ) ∈ bd(B0)×RK−1, we have

Pr(R ≤ 0) ≤ Pr(W (β̄, t ) ≤ 0) = 1/2 and therefore r0 ≤ 0. Hence, the distribution of R is absolutely continuous

on (0,∞) and at all 1−α quantiles for α< 1/2.

■
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