
The Stata Journal (yyyy) vv, Number ii, pp. 1–15

Distribution-Free Estimation of Heteroskedastic
Binary Response Models in Stata

Jason R. Blevins
Ohio State University
blevins.141@osu.edu

Shakeeb Khan
Duke University

shakeebk@econ.duke.edu

Abstract. This paper considers two recently proposed semiparametric estimators
for distribution-free binary response models under a conditional median restriction.
It shows that these estimators can be implemented in Stata using nl through
simple modifications to the nonlinear least squares probit criterion function. We
then introduce dfbr, a new Stata command which implements these estimators,
and provide several examples of its usage. Although it is straightforward to carry
out the estimation using nl, the dfbr implementation uses Mata for improved
performance and robustness.

Keywords: st0001, dfbr, binary response, heteroskedasticity, nonlinear least squares,
semiparametric estimation, sieve estimation

Date: First version: September 6, 2008. This revision: March 18, 2013.

1 Introduction

This paper considers the Stata implementations of two recently proposed semiparametric
estimators for distribution-free binary response models of the form

yi = 1 {x′iβ + εi > 0} , (1)

where yi ∈ {0, 1} is an observed response variable, xi is a vector of k observed covariates,
εi is an unobserved disturbance term, and β is an unknown vector of parameters of
interest. Our goal is to estimate β given a random sample of observations {yi, xi}ni=1.

Following Manski (1975, 1985) and Horowitz (1992), we impose only a relatively
weak conditional median independence condition:

med(εi |xi) = 0.

More formally, we assume that the distribution of εi conditional on xi has median zero
almost surely. Such a restriction ensures point identification of β while allowing for
general forms of heteroskedasticity (e.g., random coefficients). Thus, the estimators we
propose are semiparametric.

Alternatively, parametric methods specify the distribution of εi up to a finite vector
of parameters and typically assume this distribution is independent of xi. Under such an
assumption, one can estimate β using maximum likelihood. However, if the distribution
of εi is misspecified or heteroskedastic, then the maximum likelihood estimator is gen-
erally inconsistent (Yatchew and Griliches 1985). Semiparametric or “distribution-free”

c© yyyy StataCorp LP st0001

2 Distribution-Free Binary Response

methods avoid these issues by estimating β without making a particular parametric
assumption about the distribution of εi.

The focus of this paper is on the Stata implementation of the sieve nonlinear least
squares (SNLLS) of Khan (2013) and the local nonlinear least squares (LNLLS) estima-
tor of Blevins and Khan (2013). These estimators have the advantage of consistently
estimating the parameters of the potentially heteroskedastic binary choice model above,
while remaining computationally tractable enough that end users can easily carry out
estimation using built-in commands in Stata. We focus here on the implementation
of these methods and refer the interested reader to the papers cited above for further
results and technical details.

This paper proceeds as follows. Section 2 briefly reviews Stata’s nonlinear least
squares (NLLS) estimation framework and, as a motivating example, first reviews the
NLLS probit estimator for a parametric version of the model above with εi ∼ N(0, 1).
Sections 3 and 4 describe, respectively, LNLLS estimator of Blevins and Khan (2013)
and the SNLLS of Khan (2013). We show that both of these estimators can be eas-
ily implemented using Stata’s nl command through simple modifications to the stan-
dard NLLS probit regression function. Finally, Section 5 describes dfbr, a new Stata
command which implements these estimators using high performance Mata code with
analytic derivatives, and then provides several examples of its usage.

2 Nonlinear Least Squares Estimation in Stata

Stata’s nl command provides an interface for fitting an arbitrary nonlinear, parametric
regression function f(x, θ) = E[y | x] using least squares. There are three ways to
provide the regression function to nl: interactively using a substitutable expression, via
a substitutable expression program, or using a function evaluator program. We focus
here on the first approach—using substitutable expressions—since it is straightforward
to implement for most simple models, including the ones we discuss in the following
sections. See [R] nl for further details regarding Stata’s NLLS capabilities.

As an example, consider the standard probit regression model

E[yi |xi] = Φ(x′iβ) (2)

where β is a vector of parameters of interest and Φ is the cumulative distribution
function (cdf) of the standard normal distribution. This is precisely the model in (1)
when εi ∼ N(0, 1). Given a sample of size n, {yi, xi}ni=1, the nonlinear least squares

estimator β̂ of β is defined to be a vector that satisfies Qn(β̂) = minβ∈B Qn(β) where
the criterion function is

Qn(β) =
1

n

n∑
i=1

[yi − Φ (x′iβ)]
2

(3)

and where B is the parameter space.

Recall that the standard parametric probit model requires a scale normalization:
the scale of β and the variance of εi, denoted σ2, cannot be separately identified. To

Blevins and Khan 3

see this, note that for any scalar α > 0, the model with coefficients αβ and variance

α2σ2 is observationally equivalent since Φ
(
x′(αβ)
ασ

)
= Φ

(
x′β
σ

)
. We have imposed the

scale normalization in (2) and (3) by setting σ = 1 and using the standard normal
cdf, so we can identify and estimate all three slope coefficients. This is the usual scale
normalization for the probit model, but an alternative would be to normalize one of the
the coefficients, say β2 = 1, and then estimate σ.

To make the example more concrete, suppose that we have a binary dependent
variable y and two independent variables x1 and x2 and that the corresponding variables
in our Stata dataset are named y, x1, and x2. We wish to estimate the intercept β0 and
the two slope coefficients β1 and β2, which we shall denote by b0, b1, and b2 in Stata.
To estimate the model using the nl command, we can express the regression function
in (2) as a substitutable expression:

. nl (y = normal({b0} + {b1}*x1 + {b2}*x2))

The expression in parentheses following y = is the regression function and the parame-
ters to estimate appear in braces. Here, the function normal evaluates the cumulative
distribution function of the standard normal distribution (see [D] functions). Issuing
the above command estimates β0, β1, and β2 by minimizing the sum of squared residuals
for this model:

n∑
i=1

[yi − Φ (β0 + β1x1i + β2x2i)]
2
.

In the following sections, we describe two new estimators whose objective functions
are also of the nonlinear least squares form and, therefore, can be implemented in Stata
using the nl command in a similar way. Importantly, however, these estimators are
for the more general model described in the introduction, which does not require a
specific parametric assumption on the error term and which allows for general forms of
heteroskedasticity. This is in contrast to the parametric probit model in the example
above, where the error term is homoskedastic and normally distributed.

3 Local Nonlinear Least Squares Estimator

The local nonlinear least squares estimator developed by Blevins and Khan (2013) is

defined to be a vector β̂ that satisfies Qn(β̂) = minβ∈Θ×1Qn(β) where

Qn(β) =
1

n

n∑
i=1

[
yi − F

(
x′iβ

hn

)]2

.

Here, F is a nonlinear regression function, such as a cdf, which we will specify below
and hn is a sequence of positive numbers such that hn → 0 as n → ∞, similar to a
bandwidth sequence used in nonparametric kernel estimation. We adopt the standard
semiparametric scale normalization (cf. Horowitz 1992), normalizing the k-th element

of β to one so that β̂ = (θ̂′, 1)′. We denote this normalization by using Θ × 1 as the
parameter space.

4 Distribution-Free Binary Response

When we choose F to be Φ, the standard normal cdf, then aside from scaling the
index x′iβ by the bandwidth and normalizing the coefficient on xk, this objective function
is identical to that of the NLLS probit estimator in (3). Thus, in order to implement
the estimator in Stata we simply need to normalize one component of β and divide the
index by hn.

Using the two-regressor example from before, suppose there are n = 1000 obser-
vations. Then we can estimate the model using the bandwidth hn = n−1/3 = 0.1 as
follows:

. nl (y = normal(({b0} + {b1}*x1 + x2) / 0.1))

where we have used the normal cdf as the regression function. We normalized the
coefficient on x2 by simply omitting this parameter from the substitutable expression,
effectively setting it to one and leaving the coefficient on x1 and the intercept as the
only parameters.

Blevins and Khan (2013) show that, while the estimator above is consistent, the rate
of convergence is only n1/3 due to the fact that the bias converges at the rate hn, in
contrast to the rate h2

n for estimators such as the smoothed maximum score estimator.1

They propose two methods for reducing the order of the bias, and consequently improv-
ing the rate of convergence to n2/5. The first method is to use a different regression
function,

F (u) = (1/2− αF − βF) + 2αFΦ(u) + 2βFΦ(
√

2u), (4)

where Φ(·) is the standard normal cdf, αF = − 1
2

(
1−
√

2 +
√

3
)
βF , and βF 6= 0. This

function was chosen so that a particular term in the asymptotic bias of the estimator
equals zero, something which cannot be achieved when F (·) is a cumulative distribution
function. In this case the bandwidth sequence should be proportional to n−1/5 in order
to achieve the fastest rate of convergence.

As with the NLLS probit objective function, this function can be expressed entirely
using Stata’s built in normal function, for example:

. local h = _N^(-1/5)

. local index "({b0} + {b1}*x1 + x2) / ‘h’"

. local beta = 1.0

. local alpha = -0.5 * (1 - sqrt(2) + sqrt(3))*‘beta’

. local const = 0.5 - ‘alpha’ - ‘beta’

. nl (y = ‘const’ + 2*‘alpha’*normal(‘index’) + 2*‘beta’*normal(sqrt(2)*‘index’))

The second proposed bias reduction method is to define a jackknife version of the
estimator,

θ̂jk = w1θ̂1 + w2θ̂2,

where θ1 and θ2 are two local nonlinear least squares estimators using the normal cdf and
bandwidths h1n = κ1n

−1/5 and h2n = κ2n
−1/5 respectively and where w1 and w2 are

weights. The weights and bandwidth constants must satisfy the constraints w1 +w2 = 1

1. Note that although the estimator is defined by a nonlinear least squares criterion, the assumptions
are quite different, and so the estimator does not have the same limiting distribution as the standard
NLLS estimator.

Blevins and Khan 5

and w1κ1 + w2κ2 = 0. The optimal choice of these values is discussed in Blevins and
Khan (2013). Note that obtaining the two estimates is no more difficult than obtaining
the NLLS probit estimate from before and that constructing the final weighted sum can
be accomplished with basic Stata macro programming.

Although here we have emphasized that both estimators can be implemented in
Stata manually if needed, the dfbr command we introduce below automates the pro-
cess of obtaining both estimators described above. For the NLLS estimator using the
regression function in (4), dfbr will automatically estimate the feasible optimal band-
width sequence, so the user does not have to actually choose the bandwidth. For the
jackknife NLLS estimator, the jackknife weights and constants are selected according to
the rule of thumb provided by Blevins and Khan (2013). Thus, in both cases, the user
simply needs to provide the dependent and independent variables.

A final but important reason for providing a dedicated command for these estimators
is that, although the point estimates reported by nl for these estimators will be correct,
the reported standard errors are not. The point estimates are correct because our
estimators are indeed defined by nonlinear least squares criteria. On the other hand,
the standard errors reported by nl are based on the limiting distribution of the nonlinear
least squares estimator, which is derived under the conditional mean independence
assumption E[εi | xi] = 0. The assumptions underlying our estimators are different,
and our estimators perform smoothing and scaling, so the asymptotic properties are
different.

The asymptotic variance-covariance matrices for the estimators described involve
unknown density functions which would need to be estimated nonparametrically, so
dfbr instead reports bootstrap estimates of the standard errors. Although we implement
this internally in Mata,2 this could also be achieved using Stata’s bootstrap prefix in
conjunction with nl as in the following example:

bootstrap, rep(1001): nl (y = normal(({b0} + {b1}*x1 + x2) / 0.1))

4 Sieve Nonlinear Least Squares Estimator

Although the objective function for the sieve nonlinear least squares estimator intro-
duced by Khan (2013) is slightly more complex, it is still ultimately a variation on the
NLLS probit objective function in (3) and so it is straightforward to obtain estimates
using nl. Specifically, the estimator is defined by minimization of the criterion function

Qn(θ, `) =
1

n

n∑
i=1

[yi − Φ (x′iβ · exp(`(xi)))]
2

where ` is a scaling function—an infinite-dimensional unknown—and β = (θ′, 1)′ is a
finite-dimensional vector of parameters.

In order to use NLLS, we introduce a finite-dimensional approximation of ` using

2. Specifically, we use the mm bs bootstrap function the moremata package (Jann 2005).

6 Distribution-Free Binary Response

a linear-in-parameters sieve estimator. Let b0j(xi) denote a sequence of known basis
functions for j = 1, . . . , κn for some integer κn and let bκn(xi) = (b01(xi), · · · , b0κn

(xi))
′.

The function g(xi) ≡ exp(`(xi)) in the above objective function can be approximated
by gn(xi) = exp(bκn(xi)

′γn) where γn is a vector of parameters of length κn. Let
αn ≡ (θ, gn) ∈ An where An is the sieve space. The estimator can be defined as a
vector α̂n ∈ An which minimizes the objective function

Qn(α) =
1

n

n∑
i=1

[yi − Φ(x′iβ · gn(xi))]
2
,

where, as before, β = (θ′, 1)′.

Under the conditions of Khan (2013), if the number of basis functions κn approaches
infinity, but slower than n, then this estimator is consistent and asymptotically normal.
Like many related semiparametric estimators, the rate of convergence depends on the
smoothness of certain unknown functions. In this case, when Φ (x′iβ · exp(`(xi))) has p
continuous derivatives and some additional regularity conditions are satisfied, the rate
of convergence is np/(2p+1). For example, when p = 2, this rate simplifies to n2/5.

The sieve nonlinear least squares estimator has the advantage that choice probabili-
ties and regression coefficients are estimated simultaneously. That is, once α̂n = (θ̂, ĝn)
is obtained, choice probabilities P̂i can be estimated by substituting these estimates into
the regression function as follows:

P̂i = Φ(x′iβ̂ · ĝn(xi)).

To illustrate the Stata implementation of this estimator, consider a simple model
with two regressors x1 and x2. We approximate the scaling function using powers of
the independent variables and interaction terms up to second order as basis functions:

gn(xi) = exp(γ0 + γ1x1 + γ2x2 + γ3x1x2 + γ4x
2
1 + γ5x

2
2).

To estimate the model using nl, we construct the corresponding substitutable expres-
sion:

. nl (y = normal(({b0} + {b1}*x1 + x2) * exp({g0} + {g1}*x1
+ {g2}*x2 + {g3}*x1*x2 + {g4}*x1*x1 + {g5}*x2*x2)))

Again we have normalized the coefficient on x2 by omitting the corresponding parameter.

5 The dfbr Package

The new dfbr package implements each of the estimators described above: the sieve
nonlinear least squares estimator of Khan (2013) and both variants of the local nonlinear
least squares estimator of Blevins and Khan (2013). Rather than construct substitutable
expressions for the modified nonlinear least squares probit objective functions and calling
Stata’s built-in nl command, we instead implement the estimators using the lower-level

Blevins and Khan 7

Mata language. This allows us to make use of Mata’s optimize framework and to
provide analytic derivatives during optimization for improved performance and accuracy.

The sieve nonlinear least squares estimator is the default method, but this choice
may be made explicit by using the sieve option. The user may supply a set of basis
variables such as polynomial terms of the independent variables using the basis option.
If no basis elements are provided, then the given independent variables and a constant
are used.

The local nonlinear least squares estimator may be selected using the local option.
By default the regression function in (4) is used and dfbr will automatically calculate
the feasible optimal bandwidth. Alternatively, the user may override this choice by
supplying a custom bandwidth using the bandwidth option.

To select the jackknife local nonlinear least squares estimator with the normal cdf as
the regression function, both the local and normal options must be given together. The
jackknife weights and bandwidth constants are chosen automatically and need not be
provided, however, custom bandwidth constants κ1 and κ2 can be given using the k1 and
k2 options, with the corresponding weights being calculated to satisfy the constraints.

For all three estimators, bootstrap estimated standard errors are reported by default.
Both the number of replications and the random number generator seed can be specified.
In all cases the coefficient on the last independent variable is normalized to one.

The formal syntax is given below along with a detailed description of each of the
options and return values. Some examples are then provided to illustrate the usage.

5.1 Syntax

Sieve nonlinear least squares estimation:

dfbr depvar indepvars
[
if
][

in
][
, sieve basis(basis vars) options

]
Local nonlinear least squares estimation:

dfbr depvar indepvars
[
if
][

in
]
, local

[
normal bandwidth(#) options

]
5.2 Options

The dfbr command accepts several options, listed below first with options specific to
either SNLLS and LNLLS, followed by options common to both estimators.

Sieve nonlinear least squares

• sieve specifies the sieve nonlinear least squares estimator (default).

8 Distribution-Free Binary Response

• basis(basis vars) provides a list of variables to use in the linear-in-parameters
sieve approximation of the scaling function. An intercept term is automatically
included in the scale equation and need not be specified along with the other
variables. If this option is omitted, then a constant and the provided independent
variables are used.

Local nonlinear least squares

• local specifies the local nonlinear least squares estimator, using the alternative
nonlinear regression function by default.

• normal uses the jackknife local nonlinear least squares estimator with the standard
normal cdf as the nonlinear regression function. The rule of thumb jackknife
weights and rate constants described in Blevins and Khan (2013) are used.

• bandwidth(#) specifies the bandwidth. If this option is omitted the feasible opti-
mal bandwidth will be used, following a procedure analogous to that of Horowitz
(1992). This option has no effect if normal is specified.

• k1(#) overrides the first bandwidth constant for the jackknife estimator and must
be specified along with k2(#).

• k2(#) overrides the second bandwidth constant for the jackknife estimator and
must be specified along with k1(#).

Common options

• noconstant suppresses the constant term (intercept) in the linear index.

• brep(#) specifies the number of bootstrap replications used to estimate standard
errors. If standard errors are not needed, specify brep(0) to skip the bootstrap
step entirely and report only the estimated coefficients. Corresponding to Stata’s
bootstrap, the default value is brep(50), but this may be too low for many
applications.

• seed(#) sets the seed of the random number generator used for bootstrap repli-
cations. This is useful for generating reproducible results.

• level(#) sets the confidence level. The default is level(95) or the global default
if changed using set level.

• nmiter(#) sets the number of initial Nelder-Mead iterations. See [M-5] optimize
for additional details.

• nmdelta(#) sets the step sizes for constructing the initial Nelder-Mead simplex.
See [M-5] optimize for additional details.

Blevins and Khan 9

5.3 Saved Results

The dfbr command stores the results below in e() upon completion. After sieve estima-
tion, only the index coefficients are stored in e(b), with estimated variance-covariance
matrix e(V), but if the estimated sieve parameters are required, the vector of all pa-
rameters is stored in e(alpha) with corresponding variance-covariance e(V alpha).

Scalars
e(N) number of observations e(K) number of coefficients
e(brep) bootstrap replications e(level) confidence level
e(k1) jackknife bandwidth constant e(k2) jackknife bandwidth constant
e(w1) jackknife weight e(w2) jackknife weight
e(h) bandwidth

Macros
e(method) sieve or local e(cmdname) name of command used
e(depvar) dependent variable e(vce) always ”bootstrap”
e(basis) basis variables

Matrices

e(b) coefficient vector β̂ e(alpha) estimated parameters α̂

e(V) covariance matrix for β̂ e(V alpha) covariance matrix for α̂

e(BS) bootstrap replicates for β̂ e(BS alpha) bootstrap replicates for α̂
e(start) optimization starting values

Functions
e(sample) marks estimation sample

5.4 Examples

We first generate a dataset containing a binary response variable which is generated
from two independent variables and a heteroskedastic error term. We use the same
dataset throughout the remaining examples. The dataset is generated using a fixed
seed so that the results can be easily reproduced.

Heteroskedastic Binary Response Data

We generate a random sample of 2000 observations with normally distributed regres-
sors x1 ∼ N(0, 1) and x2 ∼ N(1, 1) and a uniformly distributed error term, normalized
to have mean zero and variance one. We scale the errors using the scaling function
exp(x1 · |x2|) to introduce (multiplicative) heteroskedasticity. We normalize the coeffi-
cient on x2 to one in the data generating process to make the true values and estimates
comparable without scaling.

. set seed 2012111707

. set obs 2000
obs was 0, now 2000

. generate x1 = invnorm(uniform())

. generate x2 = 1 + invnorm(uniform())

. generate u = (sqrt(12)*uniform() - sqrt(12)/2) * exp(x1*abs(x2))

. generate y = (-0.1 + 0.3 * x1 + x2 - u) > 0

10 Distribution-Free Binary Response

Basic SNLLS Estimation

The simplest usage is to simply invoke dfbr with only the dependent and indepen-
dent variables and no additional options:

. dfbr y x1 x2

Bootstrap replications (50)
1 2 3 4 5

.. 50

Sieve Nonlinear Least Squares (SNLLS) Number of obs = 2000

Observed
y Coef. Std. Err. z P>|z| [95% Conf. Interval]

_cons -.1048974 .0683328 -1.54 0.125 -.2388271 .0290324
x1 .2888343 .0410659 7.03 0.000 .2083466 .3693219

Coefficient on x2 normalized to 1.
Sieve basis: _cons x1 x2

SNLLS Estimation with Custom Basis

To estimate the model using the sieve estimator with second-order polynomial terms,
we can first generate the additional basis variables and then invoke dfbr with the sieve
option:

. generate x1x2 = x1 * x2

. generate x1_2 = x1^2

. generate x2_2 = x2^2

. dfbr y x1 x2, sieve basis(x1 x2 x1x2 x1_2 x2_2)

Bootstrap replications (50)
1 2 3 4 5

.. 50

Sieve Nonlinear Least Squares (SNLLS) Number of obs = 2000

Observed
y Coef. Std. Err. z P>|z| [95% Conf. Interval]

_cons -.1113518 .143764 -0.77 0.439 -.3931242 .1704205
x1 .3063337 .0875111 3.50 0.000 .134815 .4778524

Coefficient on x2 normalized to 1.
Sieve basis: _cons x1 x2 x1x2 x1_2 x2_2

In Stata 11 and later, one can use factor variable notation to automatically generate
the basis terms without actually generating and storing any additional variables:

. dfbr y x1 x2, sieve basis((c.x1 c.x2)##(c.x1 c.x2))

Bootstrap replications (50)
1 2 3 4 5

.. 50

Sieve Nonlinear Least Squares (SNLLS) Number of obs = 2000

Blevins and Khan 11

Observed
y Coef. Std. Err. z P>|z| [95% Conf. Interval]

_cons -.1113518 .1467073 -0.76 0.448 -.3988929 .1761892
x1 .3063337 .0905895 3.38 0.001 .1287816 .4838858

Coefficient on x2 normalized to 1.
Sieve basis: _cons x1 x2 c.x1#c.x1 c.x1#c.x2 c.x2#c.x2

Here, the expression (c.x1 c.x2)##(c.x1 c.x2) is equivalent to the manually gener-
ated basis x1 x2 x1x2 x1 2 x2 2 from before. See [U] fvvarlist for additional details
on factor variables.

Basic LNLLS Estimation with Custom Bootstrap Replications

To estimate the model using the local nonlinear least squares estimator with the de-
fault bandwidth and report standard errors estimated using 200 bootstrap replications:

. dfbr y x1 x2, local brep(200)

Bootstrap replications (200)
1 2 3 4 5

.. 50

.. 100

.. 150

.. 200

Local Nonlinear Least Squares (LNLLS) Number of obs = 2000
Bandwidth = 2.09358e-01

Observed
y Coef. Std. Err. z P>|z| [95% Conf. Interval]

_cons .0601835 .1732894 0.35 0.728 -.2794576 .3998245
x1 .4113817 .0912445 4.51 0.000 .2325459 .5902176

Coefficient on x2 normalized to 1.

LNLLS Estimation with Custom Bandwidth

A custom bandwidth can be chosen using the bandwidth option:

. dfbr y x1 x2, local bandwidth(0.1)

Bootstrap replications (50)
1 2 3 4 5

.. 50

Local Nonlinear Least Squares (LNLLS) Number of obs = 2000
Bandwidth = 1.00000e-01

Observed
y Coef. Std. Err. z P>|z| [95% Conf. Interval]

_cons .0321924 .1989456 0.16 0.871 -.3577338 .4221185

12 Distribution-Free Binary Response

x1 .3852976 .1454903 2.65 0.008 .1001417 .6704534

Coefficient on x2 normalized to 1.

Basic Jackknife LNLLS Estimation

To use the jackknife LNLLS estimator, which uses the normal cdf as the regression
function, invoke dfbr with the local and normal options:

. dfbr y x1 x2, local normal

Bootstrap replications (50)
1 2 3 4 5

.. 50

Local Nonlinear Least Squares (LNLLS) Number of obs = 2000

Observed
y Coef. Std. Err. z P>|z| [95% Conf. Interval]

_cons .3631714 .3749945 0.97 0.333 -.3718043 1.098147
x1 .6163898 .21703 2.84 0.005 .1910188 1.041761

Coefficient on x2 normalized to 1.

5.5 Monte Carlo Evidence

This section provides some additional evidence on the finite-sample properties of the
estimators beyond that provided by Khan (2013) and Blevins and Khan (2013). The
results are based on replications of the model

yi = 1 {β0 + β1xi1 + β2xi2 + εi > 0} ,

where we normalize β2 = 1 and choose β0 = −1 and β1 = 2. The covariates have
distributions xi1 ∼ N(0, 1) and xi2 ∼ N(1, 1). We consider two specifications where the
distribution of εi is independent of xi1 and xi2 and two specifications where there is
multiplicative heteroskedasticity. For the independent specifications, we draw εi from
the uniform and standard normal distributions, respectively. For the heteroskedastic
designs, we multiply each draw by the factor exp(xi1 · |xi2|), so that the variance of the
error term depends on both xi1 and xi2.

For each specification, we report results for 1001 replications of sample size n = 200.
Specifically, we report the mean bias and mean squared error for both β0 and β1.
Additionally, we also report the coverage of the bootstrap confidence intervals for both
parameters. We use 100 bootstrap replications (i.e., brep(100)) to obtain confidence
interval for each estimate, and this is repeated for each of the 1001 replications for each
sample size.3 The confidence intervals have 95% nominal coverage, and so the fraction
of replications where the confidence interval covers the true parameter values should

3. The results were qualitatively very similar for brep(250) and brep(500).

Blevins and Khan 13

Table 1: Monte Carlo Results

β0 β1

Estimator Bias MSE Coverage Bias MSE Coverage

Homoskedastic Normal

LNLLS (F) -0.0108 0.0002 0.9720 -0.0920 0.0090 0.9750
LNLLS (Φ) 0.0015 0.0001 0.9770 -0.1190 0.0150 0.9740
SNLLS 0.0010 0.0000 0.9720 -0.0310 0.0011 0.9590

Homoskedastic Uniform

LNLLS (F) -0.0008 0.0001 0.9680 -0.1951 0.0392 0.9800
LNLLS (Φ) 0.0084 0.0003 0.9740 -0.2184 0.0493 0.9720
SNLLS 0.0025 0.0000 0.9670 -0.0466 0.0023 0.9600

Heteroskedastic Normal

LNLLS (F) 0.0238 0.0007 0.9670 -0.0372 0.0023 0.9740
LNLLS (Φ) 0.0309 0.0011 0.9700 -0.0386 0.0031 0.9700
SNLLS 0.0635 0.0041 0.9470 0.1211 0.0149 0.9411

Heteroskedastic Uniform

LNLLS (F) 0.0327 0.0012 0.9710 -0.1092 0.0140 0.9690
LNLLS (Φ) 0.0384 0.0018 0.9600 -0.1121 0.0160 0.9620
SNLLS 0.0878 0.0077 0.9391 0.1578 0.0252 0.9341

be approximately 0.95. Other than increasing the number of bootstrap replications, we
use the default options for each estimator. The results are reported in Table 1.

5.6 Implementation Details

We conclude with a few notes on specific implementation details. For each estimator,
dfbr uses six starting values and returns the best estimate. Two starting values are the
constant vectors of all zeros and all ones. The remaining four are based on other, easier
to calculate estimators: ordinary least squares (OLS), least absolute deviations (LAD),
probit, and logit. These values are stored in e(start).

The bootstrap standard errors and confidence intervals reported by dfbr are calcu-
lated in the same way as those produced by Stata’s bootstrap command. That is, they
are based on the variance matrix of the bootstrap replicates. In particular, the reported
standard errors are square roots of the diagonal elements of the variance matrix and
the confidence intervals are based on a normal approximation (i.e., using the standard
errors and critical values of the standard normal distribution). The bootstrap replicates
are stored in the e(BS) matrix to allow further processing, if desired.

14 Distribution-Free Binary Response

For example, to convert the columns of the e(BS) matrix to variables in the current
dataset named coeff1, coeff2, and so on, use the svmat command after executing
dfbr:

. dfbr y x1 x2, local brep(500)

. matrix BS = e(BS)

. svmat BS, names(coeff)

. summarize coeff*

. correlate coeff*, covariance

For the local nonlinear least squares estimator, we first obtain an estimate β̂(1)

using the default bandwidth, h(1) = n−1/5. This estimate is then used to estimate the
optimal bandwidth h(2), using a procedure analogous to that of Horowitz (1992). This
procedure was also written in Mata for ease of implementation and for performance
reasons. Finally, using the bandwidth h(2), we obtain the reported estimates β̂(2). This
process can be skipped and a custom bandwidth can be used instead by specifying the
bandwidth option.

By default, for each starting value the program begins with at most 10k Nelder-Mead
iterations, followed by a complete run of BFGS with analytic gradient and Hessian
calculations. This procedure is more robust to poor starting values that might be
in non-concave regions of the objective function, while switching to a more accurate
gradient-based method before reporting the final estimates. The maximum number of
initial Nelder-Mead iterations can be adjusted using the nmiter option, where using
nmiter(0) skips this initial step completely. The initial Nelder-Mead simplex step sizes
are set to a vector of ones by default, but can be set to a vector equal to some constant
delta using nmdelta(delta) option. The maximum number of BFGS iterations can
be controlled by using set maxiter.

6 Acknowledgments

We are grateful to Jonah Gelbach, Phil Haile, and Jeff Wooldridge for useful comments
which helped improve dfbr.

7 References
Blevins, J. R., and S. Khan. 2013. Local NLLS Estimation of Semiparametric Binary

Choice Models. Econometrics Journal, forthcoming.

Horowitz, J. L. 1992. A Smoothed Maximum Score Estimator for the Binary Response
Model. Econometrica 60: 505–531.

Jann, B. 2005. moremata: Stata module (Mata) to provide various functions. Available
from http://ideas.repec.org/c/boc/bocode/s455001.html.

Khan, S. 2013. Distribution Free Estimation of Heteroskedastic Binary Choice Models
using Probit Criterion Functions. Journal of Econometrics 172: 168–182.

Blevins and Khan 15

Manski, C. F. 1975. Maximum Score Estimation of the Stochastic Utility Model of
Choice. Journal of Econometrics 3: 205–228.

———. 1985. Semiparametric Analysis of Discrete Response: Asymptotic Properties of
the Maximum Score Estimator. Journal of Econometrics 27: 313–333.

Yatchew, A., and Z. Griliches. 1985. Specification Error in Probit Models. The Review
of Economics and Statistics 67: 134–139.

About the authors

Jason R. Blevins is Assistant Professor of Economics at The Ohio State University.

Shakeeb Khan is Professor of Economics at Duke University.

	Distribution-Free Estimation of Heteroskedastic Binary Response Models in Statato.44em.to.44em.Blevins and Khan

