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Abstract. Fractionally integrated time series exhibiting long memory are commonly in
economics, finance, and related fields. Semiparametric methods for estimating the memory
parameter d have proven to be effective and robust, but practitioners face difficulties
arising from the availability multiple estimators with different valid parameter ranges and
the choice of bandwidth parameter m. This paper provides a comprehensive evaluation
of local Whittle methods from Robinson’s (1995) foundational estimator through the
exact local Whittle approaches of Shimotsu and Phillips (2005) and Shimotsu (2010),
where theoretical advances have expanded the feasible range of memory parameters and
improved efficiency. Using a new implementation in Python, PyELW, we replicate key
empirical and Monte Carlo results from the literature, providing external validation for
both the original findings and the software implementation. We extend these empirical
applications to demonstrate how method choice can affect substantive conclusions about
persistence. Based on comprehensive simulation comparisons and empirical evidence, we

provide practical guidance for applied researchers on how and when to use each method.
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1. Introduction

Estimation of the memory parameter d of fractionally integrated time series is a fundamental
problem in econometrics, with applications in macroeconomics, finance, and climate econo-
metrics. Since the seminal work of Granger and Joyeux (1980) and Hosking (1981), who
introduced fractionally integrated processes to model persistence between the extremes of
stationary and unit root behavior, a literature on semiparametric estimation of the memory
parameter based on frequency domain methods has emerged.

Early work by Geweke and Porter-Hudak (1983) and Robinson (1995b) was based on
log-periodogram regressions. The local Whittle (LW) approach developed by Kiinsch (1987)

and Robinson (1995a) achieved the semiparametric efficiency bound for stationary models



with d € (—%, %) by instead maximizing a frequency-domain quasi-likelihood function based
on the Whittle likelihood.

To extend the valid range of parameter values to include nonstationary models, Ve-
lasco (1999), Hurvich and Chen (2000), and Phillips and Shimotsu (2004) developed LW
modifications based on tapering. Shimotsu and Phillips (2005) later introduced the exact
local Whittle (ELW) estimator, extending the method to accommodate the entire parame-
ter space, including both stationary and nonstationary models, by using exact fractional
differencing, provided that the optimization interval has width less than %. The two-step
ELW procedure of Shimotsu (2010) (2ELW) generalized the approach to handle processes
with unknown mean and time trend, while Shimotsu (2012) extended the framework to
fractionally cointegrated systems.

Recent advances have further expanded the scope of local Whittle methods. Arteche
(2020) extended ELW estimation to multiple poles to jointly estimate memory parameters at
standard, seasonal, and other cyclical frequencies. Extensions to multivariate systems through
fractional cointegration (Shimotsu, 2012), spatial-temporal data (Chen and Wang, 2017),
functional time series (Li, Robinson, and Shang, 2021), and high-dimensional settings (Baek,
Diiker, and Pipiras, 2023) have broadened applicability, while computational improvements
including debiased likelihood methods (Sykulski, Olhede, Guillaumin, Lilly, and Early, 2019)
improve finite-sample performance.

The rich theoretical development of local Whittle methods has yielded several estima-
tors, each with its own advantages, but this creates challenges for applied researchers in
understanding the trade-offs, in choosing among them, and implementing them properly.
Existing software implementations often cover only subsets of the available methods or lack
validation against original results. This paper addresses these gaps through a comprehensive
comparison of local Whittle methods that serves three primary objectives. First, we review
the theoretical development of local Whittle methods, providing a survey of major results.
Second, we systematically replicate the key empirical and Monte Carlo results from several
foundational papers in the literature using PyELW, a new cross-platform library for LW,
ELW, and 2ELW estimation in Python (Blevins, 2025). This provides external validation for
both the original results and the Python implementation. Third, we conduct a comprehensive
series of Monte Carlo simulations and empirical applications with non-ideal data—including
processes with short-run dynamics, unknown means, and time trends—to compare methods
and provide guidance for applied researchers on their application.

The remainder of this paper is organized as follows. Section 2 reviews the theoretical
development of local Whittle estimation methods and reports our replications of main results
from the literature for each method. Section 3 presents a new, cross-method Monte Carlo

comparison on a variety of simulated processes with controlled contaminations. Section 4



presents an extended comparative empirical analysis with several macroeconomic and
financial time series. Section 5 provides practical advice for practitioners on selecting
and applying local Whittle methods to real data. Section 6 concludes. All datasets and
replication code is available at https://github.com/jrblevin/lws.

2. Semiparametric Estimation of Fractional Integration

This section surveys five major local Whittle estimators for fractional integration, examining
their theoretical foundations, computational properties, and empirical performance. The
progression of methods reflects a series of improvements, each overcoming limitations of
previous estimators: Robinson’s (1995a) original LW estimator handled only stationary
processes, leading Velasco (1999) and Hurvich and Chen (2000) to develop tapered variants
that extended the parameter range at the cost of efficiency. Shimotsu and Phillips (2005)
restored efficiency through exact fractional differencing, while Shimotsu (2010) added
robustness to unknown means and trends. For each method, we first introduce the estimator
and its key theoretical results and then present focused Monte Carlo replications that verify
the theoretical properties, reproduce original published results from the literature, and
validate the new Python implementation. These simulations will set the stage for our
subsequent comparative analysis in Section 3.

Consider the fractionally integrated process X; defined as
(1) (Q1-L)X, =wu 1{t>1}, t=0+1,+2,...

where L is the lag operator, dy € R denotes the memory parameter, 1{-} denotes the
indicator function imposing the initial condition X; = 0 for ¢ < 0, and u; is a stationary,
mean zero process with spectral density f,(\). The memory parameter dy determines the
fundamental properties of X;: standard I(0) behavior when dy = 0, stationary long memory
for dy € (0,0.5), the stationarity boundary at dyp = 0.5, nonstationary but mean-reverting
dynamics for dy € (0.5,1), and the unit root case when dy = 1. Negative values dy < 0

generate antipersistent processes, while and dy > 1 yields explosive nonstationarity.

2.1. Local Whittle Estimation

The local Whittle estimator of Robinson (1995a) exploits the power-law behavior of the

spectral density of fractionally integrated processes near zero. The spectral density satisfies

(2)  fx(A) ~GAX2 as A0


https://github.com/jrblevin/lws

where a ~ b means that a/b — 1 and G = f£,(0) > 0.!' This asymptotic relationship
captures the quintessential long-memory properties while remaining agnostic about the
specific parametric form of the short-run dynamics.

The LW approach restricts attention to the first m = m(n) < n Fourier frequencies
where (2) holds most accurately, avoiding contamination from short-run dynamics at higher

frequencies. The discrete Fourier transform of a time series a; at frequencies \; = 27j/n is
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with periodogram I,(\;) = |wa(A;)|?. The semiparametric approach substitutes the power-
law approximation fx(\;) =~ G)\;Qd for the unknown spectral density in a localized version
of the Whittle criterion. Treating G as a nuisance parameter and maximizing over G for
each fixed d yields G(d) = L i )\2dI x(Aj). Substituting this concentrated estimator back

gives the objective function:

2d
3) R(d) =1 A2 T ( ~— N T log A
(3) (d) 0g Z mjz::IOgj

The local Whittle estimator is defined as:

diw = argmin R(d)
de[Aq,Aq]
where [A1, Ag] denotes the admissible parameter space. The objective function R(d) is convex
in d (Baum, Hurn, and Lindsay, 2020, Appendix A), ensuring that any local minimum
is a global minimum and making optimization reliable. This allows the use of efficient
optimization algorithms such as golden section search to reliably locate the global minimum.
Robinson (1995a) established regularity conditions under which for dy € (—0.5,0.5), the
local Whittle estimator is consistent, converges at the optimal \/m rate, and achieves the

semiparametric efficiency bound:

(4)  Vm(dw — do) % N(0, 1/4).

Furthermore, the periodogram [Ix in the objective function is independent of d and can
be pre-computed, meaning that the objective function requires only O(m) operations per
evaluation.

The bandwidth parameter m controls the bias-variance trade-off: larger m reduces

!For nonstationary processes with |do| > 0.5, fx () represents a pseudo-spectral density since the classical
spectral density is undefined when the process has infinite variance.



variance but increases bias as higher frequencies contaminated by short-run dynamics enter
the estimation. The result above requires m — oo and m/n — 0 as n — oo to balance these
concerns. Henry and Robinson (1996) show that the theoretical optimal rate is m o n*/5
for ARFIMA processes, which minimizes the mean squared error of the estimator. However,
this optimal rate can be sensitive to model misspecification and short-run dynamics, often
leading practitioners to use more conservative choices m = |n%| with a € (0.6,0.8). See
Henry (2001), Baillie, Kapetanios, and Papailias (2014), and particularly the discussion in

Arteche and Orbe (2017) for further developments on optimal bandwidth selection.

TABLE 1. LW Estimator: Replication of Right Panel of Table 1
of Shimotsu and Phillips (2005)

SP (2005) Replication
d Bias S.D.  MSE Bias S.D. MSE

-1.3 04109 0.2170 0.2160 04114 0.2182 0.2169
—=0.7  0.0353 0.0885 0.0091 0.0373 0.0882 0.0092
—-0.3 —=0.0027 0.0781 0.0061 —0.0008 0.0780 0.0061
0.0 —0.0075 0.0781 0.0062 —0.0060 0.0775 0.0060
0.3 —0.0066 0.0785 0.0062 —0.0060 0.0778 0.0061
0.7 0.0099 0.0812 0.0067  0.0095 0.0812 0.0067
1.3 —-0.2108 0.0982 0.0541 -0.2106 0.0986 0.0541

Notes: LW estimator, n = 500 observations from ARFIMA(0,d,0),

m = n%% = 56 frequencies, 10,000 replications.

In Table 1 we present results replicating the right panel of Table 1 from Shimotsu and
Phillips (2005), illustrating the finite-sample performance of the local Whittle estimator.
The table shows the mean, standard deviation, and mean squared error of the estimates
over 10,000 replications each with n = 500 observations simulated from an ARFIMA(0, d,0)
process across a range of d values. The number of frequencies used was m = n%% = 56. The
“SP (2005)” columns report the original results while the “Replication” columns contain
our results obtained with PyELW. Our results achieve near-exact correspondence with the
original results across all specifications.

The results correspond closely with the theoretical properties of the local Whittle
estimator. Within the valid range d € [—0.5,0.5], the estimator has very little bias, standard
deviations in the range of the theoretical asymptotic value of 1/(2y/m) = 0.067, and low
mean squared errors. The performance is particularly impressive for d € [—0.3,0.3]. However,
the estimator’s limitations become apparent for d = —1.3 and d = 1.3, where the theoretical

validity breaks down and the bias begins to dominate the mean squared error.



2.2. Extending the Range via Tapering

Although the LW estimator is efficient for dy € (—0.5,0.5), this range excludes important
processes beyond the nonstationary boundary, preventing analysis of macroeconomic and
financial time series with unit root or near-unit root behavior. Velasco (1999) demonstrated
that tapering—multiplying the series by weights that decay smoothly to zero at the sample
boundaries—can extend consistency to dy € (—0.5,1) and asymptotic normality to dy < 0.75.

Formally, tapering involves scaling the original series X; by a weight sequence h; that is
symmetric around |[n/2], satisfies max h;y = 1, and decays smoothly to zero at the sample
boundaries. The tapered periodogram Ij,(\;) = |wy(\;)|?, where

T

wh()\j) = \/% Z htXte_iAjt
t=1

replaces the standard periodogram Ix(A;) in the objective function. For Velasco tapers,
the periodogram uses frequencies \; = 2mj/n with j = p,2p,3p, ..., m, where p is the taper
order, effectively subsampling every p-th frequency. As with the standard LW estimator,
evaluating these tapered objective functions remains computationally inexpensive and the
functions are amenable to simple scalar minimization algorithms.

Using tapers of higher orders p extends the feasible range of dy values and provides
robustness to trends of order p — 1. The triangular Bartlett window taper (p = 2) is valid for
do € (—0.5,1.5) and robust to linear trends, while the cosine bell and Zhurbenko-Kolmogorov
tapers (p = 3) are valid for dy € (—0.5,2.5) and robust to linear and quadratic time trends.
However, this robustness comes at the cost of increased variance, which is at least 2.1 times
the efficient LW variance. In general, the variance of the limiting distribution is p®,,/4 where
®,, is a constant that depends on the order p of the taper. For p = 2 with ®> = 1.05000 the
asymptotic variance is 2 x 1.05 = 2.1 times the efficient LW variance while for p = 3 with
®3 = 1.00354 the variance is inflated by a factor of 3.01.

Table 2 presents our replication of the right panel of Table 2 from Shimotsu and Phillips
(2005), demonstrating the finite-sample performance of the Velasco tapered local Whittle
estimator using the Bartlett taper. As before, our Python implementation yields results are
very close to the original results across all specifications. Within the range d € [-1.7,1.7],
the estimator shows good performance with low bias and standard deviations of around
0.12, close to the theoretical asymptotic approximation of \/2.1/(4m) = 0.0968 in this case.
The variance inflation factor of 2.1 is associated with p = 2 for the Bartlett taper. At more
extreme values of d, outside the method’s validity range, we see large biases and mean
squared errors.

Since PyELW implements all three tapers discussed in Velasco (1999), in Table 3 we



TABLE 2. Velasco Tapered LW Estimator: Replication of Right
Panel of Table 2 of Shimotsu and Phillips (2005)

SP (2005) Replication
d Bias S.D. MSE Bias S.D. MSE

—-3.5 1.6126 0.3380 2.7148 1.6231 0.3326 2.7450
-2.3 0.2155 0.1726 0.0762 0.2173 0.1734 0.0773
—-1.7 0.0259 0.1235 0.0159 0.0279 0.1211 0.0154
—-1.3 0.0081 0.1211 0.0147  0.0090 0.1203 0.0146
—-0.7 —0.0068 0.1219 0.0149 —-0.0048 0.1200 0.0144
—-0.3 —-0.0133 0.1224 0.0151 —-0.0097 0.1201 0.0145
0.0 —-0.0138 0.1224 0.0152 -0.0111 0.1201 0.0145
0.3 —-0.0132 0.1235 0.0154 —-0.0103 0.1201 0.0145
0.7 —0.0068 0.1227 0.0151 —-0.0051 0.1203 0.0145
1.3 0.0140 0.1232 0.0154 0.0170 0.1222 0.0152
1.7 0.0456 0.1288 0.0187  0.0485 0.1258 0.0182
23 —0.1781 0.1419 0.0519 —-0.1774 0.1410 0.0514
3.5 —1.4541 0.1338 2.1322 —1.4529 0.1378 2.1298

Notes: Velasco tapered LW estimator with Bartlett taper, n = 500
observations from ARFIMA (0, d,0), m = n%% = 56 frequencies, 10,000
replications.

TABLE 3. Comparison of Velasco (1999) Tapers

Bartlett (p = 2) Cosine (p = 3) Kolmogorov (p = 3)
d Bias S.D.  MSE Bias S.D.  MSE Bias S.D.  MSE

-3.5 1.6231 0.3326 2.7450 0.1254 0.1644 0.0427  0.2207 0.1796 0.0810
-2.3 0.2173 0.1734 0.0773 0.0698 0.1644 0.0319 0.0757 0.1648 0.0329
—-1.7 0.0279 0.1211 0.0154 0.0515 0.1643 0.0296 0.0542 0.1649 0.0301
—1.3 0.0090 0.1203 0.0146 0.0419 0.1642 0.0287 0.0431 0.1648 0.0290
—-0.7 —0.0048 0.1200 0.0144 0.0315 0.1640 0.0279 0.0313 0.1645 0.0280
—-0.3 —0.0097 0.1201 0.0145 0.0274 0.1636 0.0275 0.0268 0.1640 0.0276
0.0 —0.0111 0.1201 0.0145 0.0258 0.1632 0.0273  0.0255 0.1635 0.0274
0.3 —0.0103 0.1201 0.0145 0.0257 0.1629 0.0272  0.0259 0.1631 0.0273
0.7 —0.0051 0.1203 0.0145 0.0281 0.1625 0.0272 0.0296 0.1626 0.0273
1.3  0.0170 0.1222 0.0152 0.0410 0.1628 0.0282  0.0432 0.1622 0.0282
1.7 0.0485 0.1258 0.0182  0.0722 0.1654 0.0326  0.0597 0.1620 0.0298
23 —-0.1774 0.1410 0.0514 0.2316 0.2010 0.0940 0.1020 0.1636 0.0372
3.5 —1.4529 0.1378 2.1298 —-0.3994 0.1041 0.1704 —-0.4160 0.1835 0.2067

Notes: PyELW results for Velasco tapered LW estimators with different tapers, n = 500 observations
from ARFIMA(0, d,0), m = n®% = 56 frequencies, 10,000 replications. Bartlett taper (p = 2), Cosine
bell taper (p = 3), Kolmogorov taper (p = 3).



compare their finite-sample performance across the full range of d values. These results
clearly demonstrate the fundamental trade-off between bias reduction and variance inflation
inherent in higher-order tapering. Within the range d € [—0.7,0.7], all three tapers perform
reasonably well, but the Bartlett taper (p = 2) achieves the lowest variance with standard
deviations around 0.12, close to the theoretical value of \/2.1/(4m) = 0.097.

The higher-order tapers demonstrate their advantages in the nonstationary range. For
d € [1.3,2.3], the cosine bell and Kolmogorov tapers (p = 3) show substantially lower bias
than the Bartlett taper, though at the cost of increased variance with standard deviations
around 0.16, consistent with the theoretical value of 1/3.01/(4m) = 0.116. At extreme values
like d = —3.5, the third-order tapers maintain reasonable performance while the second-order
Bartlett taper exhibits large bias. However, all three tapers eventually break down outside

their theoretical validity ranges, as evidenced by the large biases at d = 3.5.

2.8. Efficiency Gains via Complex-Valued Tapering

Hurvich and Chen (2000) developed an alternative tapered local Whittle estimator that
achieved better efficiency than the Velasco approach while extending the valid range to
do € (—0.5,1.5). The Hurvich-Chen (HC) method applies a complex-valued taper to
first-differenced data AX; = X; — X;_1, then estimates the memory parameter of the
differenced series and adds back one degree of integration. The method uses a complex
exponential taper h; = exp(int/n) applied to the differenced data, and frequencies are

shifted to A; = 2m(j + 0.5)/n to avoid the singularity at zero. Their estimator is defined as:

duc =1+ arg s Ruc(d)
where Rypc has the same form as R(d) but uses the tapered periodogram of AX;.

The HC estimator achieves asymptotic variance of only 1.5/4 compared to 2.1/4 for
second-order Velasco tapers, representing a substantial efficiency gain. This approach
achieves robustness to linear trends by first differencing the data before applying the taper.
The complex taper then mitigates bias from potential overdifferencing while maintaining
good finite-sample performance across the extended parameter range.

In Table 4 we replicate the HC complex tapered LW estimator results from Shimotsu and
Phillips (2005), demonstrating very close agreement with the original results and confirming
the HC estimator’s strong finite-sample performance across the extended parameter range
d € (—3.5,3.5). Bias remains minimal for d € (—0.7,0.7), with standard deviations closely
matching the theoretical predictions. The complex taper successfully mitigates overdiffer-
encing bias while maintaining efficiency gains relative to alternative tapered approaches. We

defer a full cross-method comparison until Section 3.



TABLE 4. HC Tapered LW Estimator: Replication of Left Panel
of Table 2 of Shimotsu and Phillips (2005)

SP (2005) Replication
d Bias S.D. MSE Bias S.D. MSE

-3.5 2.5889 0.3037 6.7946 25920 0.2988 6.8075
-2.3 1.1100 0.2893 1.3157 1.1104 0.2882 1.3160
—-1.7 04474 0.2154 0.2466  0.4493 0.2149 0.2481
—1.3  0.1551 0.1231 0.0392 0.1547 0.1239 0.0393
—=0.7 0.0278 0.0957 0.0099  0.0294 0.0959 0.0101
—0.3  0.0100 0.0971 0.0095 0.0134 0.0972 0.0096
0.0 0.0034 0.0985 0.0097  0.0053 0.0978 0.0096
0.3 —0.0033 0.1004 0.0101 —-0.0007 0.0983 0.0097
0.7 —0.0066 0.0994 0.0099 —0.0055 0.0983 0.0097
1.3 —0.0079 0.0987 0.0098 —0.0050 0.0974 0.0095
1.7 0.0008 0.0972 0.0095 0.0029 0.0957 0.0092
23 0.0528 0.0981 0.0124  0.0557 0.0981 0.0127
3.5 —0.4079 0.1142 0.1795 —-0.4069 0.1144 0.1787

Notes: HC tapered LW estimator, n = 500 observations from
ARFIMA(0, d,0), m = n%% = 56 frequencies, 10,000 replications.

2.4. FEzact Local Whittle Estimation

Shimotsu and Phillips (2005) fundamentally reshaped the local Whittle approach by working
directly with fractionally differenced data rather than relying on approximations that fail
outside of d € (—0.5,0.5). The exact local Whittle (ELW) estimator computes the peri-
odogram of A?X; = (1 — L)?X; for each candidate value of d, eliminating the approximation
error inherent in the original method.

The fractional differencing operator, defined through the binomial expansion
t—1
AdXt = Z ﬂ-k(d)Xt—k‘a
k=0

with coefficients computed recursively via

k—1—d
mo(d) =1, mr(d) = mr—1(d) - — k>1,
transforms the data to remove d orders of integration. When d = dy, this operation recovers
the short-memory process u; exactly.

The ELW objective function has the same functional form as that of R(d) in (3) for LW,



but uses the periodogram of the fractionally differenced series:

1 & 2d &
(5)  Reww(d) =log | =Y Inax(Aj) | — = logA;,
m =1 m =1

where Inay(\j) denotes the periodogram of AYX;. The ELW objective function is no longer
convex due to the complex dependence on d through the fractional differencing operation,
so more care must be taken during optimization to avoid local minima. The advantage of
the ELW estimator is that we can consistently estimate dy whether it lies in the stationary
region, the nonstationary region, or exactly at the boundary dyp = 0.5, provided that the
optimization interval is smaller than 9/2 in width and contains the true value. Furthermore,
the ELW estimator retains the efficient limiting distribution of the LW estimator despite

this expanded range:
Vim(dgow — do) S N(0,1/4).

The computational cost of ELW is higher than for the LW estimator, which only required
one precomputed periodogram calculation and no fractional differencing operations. For
the ELW estimator, for each candidate value of d during optimization we must recompute
the fractional difference A%X; and the periodogram Iray. While computing A?X; naively
requires O(n?) operations, the PyELW implementation employs the fast fractional differenc-
ing algorithm of Jensen and Nielsen (2014) which reduces this to O(nlogn) using the fast
Fourier transform.

Table 5 presents our replication of the left panel of Table 1 from Shimotsu and Phillips
(2005), demonstrating the finite-sample performance of the ELW estimator across an extended
range of d values. The table shows the mean, standard deviation, and mean squared error
of the estimates over 10,000 replications each with n = 500 observations simulated from an
ARFIMA(0, d,0) process spanning d € [—3.5,3.5]. As with other estimators, the results of
our Python implementation are strikingly similar to the original results across all d values.

The results demonstrate the key advantage of the ELW estimator over the standard LW
estimator: excellent performance across the entire range of d values tested. Throughout
d € [—3.5,3.5], the estimator exhibits minimal bias, standard deviations near the theoretical
asymptotic value of 1/y/4m = 0.067, and uniformly low mean squared errors. This stability

contrasts with the LW estimator’s breakdown outside the stationary region |d| > 0.5.

2.5. Robustness to Unknown Mean and Trend

The previous estimators assumed that the stochastic process X; has zero mean and does

not contain a trend. However, real economic time series typically have unknown means

10



TABLE 5. ELW Estimator: Replication of Left Panel of Table 1
of Shimotsu and Phillips (2005)

SP (2005) Replication
d Bias S.D. MSE Bias S.D. MSE

-3.5 —0.0024 0.0787 0.0062 —-0.0014 0.0777 0.0060
—-2.3 —-0.0020 0.0774 0.0060 —-0.0015 0.0777 0.0060
—-1.7 —=0.0020 0.0776 0.0060 —0.0015 0.0778 0.0061
—-1.3 —-0.0014 0.0770 0.0059 —0.0015 0.0778 0.0061
—-0.7 —0.0024 0.0787 0.0062 —0.0015 0.0778 0.0061
—-0.3 —=0.0033 0.0777 0.0060 —0.0015 0.0779 0.0061
0.0 -0.0029 0.0784 0.0061 —0.0016 0.0778 0.0061
0.3 —-0.0020 0.0782 0.0061 —0.0015 0.0779 0.0061
0.7 -0.0017 0.0777 0.0060 -—0.0015 0.0778 0.0061
1.3 —-0.0014 0.0781 0.0061 -0.0014 0.0779 0.0061
1.7 —0.0025 0.0780 0.0061 —0.0014 0.0778 0.0061
2.3 -0.0026 0.0772 0.0060 —-0.0012 0.0779 0.0061
3.5 —=0.0016 0.0770 0.0059 —0.0013 0.0778 0.0061

Notes: ELW estimator, n = 500 observations from ARFIMA(O0, d,0),
= n%% = 56 frequencies, 10,000 replications.

m

or trends that can bias fractional integration estimates. Shimotsu (2010) developed the
two-step exact local Whittle (2ELW) estimator to address these issues while preserving the
optimal N(0,1/4) limiting distribution.

Consider the model with unknown mean:
Xe=po+ X2, X0=(1-L) Py 1{t>1}

where pg is an unknown constant. The problem this introduces is subtle, because the best
way to handle the unknown mean depends on the unknown value of dy itself. For stationary
processes (dg < 0.5), the sample average X provides the best mean estimate, but for highly
persistent processes (dy > 0.75) the first observation X is better, as the sample mean
becomes biased. To address this, Shimotsu (2010) proposed an adaptive mean estimation

step inside the ELW objective function that varies smoothly with the value of d:

A(d) = w(d)X + (1 —w(d)) X1,

11



where w(d) is the weight function:

1 if d <0.5,
(6)  w(d) = q 3[1+cos(4dnd)] if 0.5 <d < 0.75,
0 if d > 0.75.

The intuition behind this weight function is as follows: for stationary processes (d < 0.5),
the sample mean X is consistent and efficient for estimating g, so w(d) = 1 places full
weight on X. For highly persistent processes (d > 0.75), the sample mean exhibits bias due
to the strong dependence structure, making the initial value X; a more reliable estimator,
so w(d) = 0. The smooth cosine transition for 0.5 < d < 0.75 gradually shifts weight from
the sample mean to the initial observation as persistence increases.

Estimation of the mean in this way renders direct asymptotic theory difficult, so Shimotsu
(2010) instead proposed a two-step approach based on a y/m-consistent first-step estimator—
one of the tapered local Whittle estimators discussed above—to obtain an initial estimate
dAT. This estimate need not be efficient, only consistent. The second step applies a single
Newton-Raphson step to the modified ELW objective function starting from dr. Shimotsu
(2010) notes that the Newton-Raphson approach can become numerically unstable when the
Hessian R}’;(dAT) takes very small values, resulting in extremely large updates. To address
this instability, he recommends using max{R’%(dr), 2} instead of the raw Hessian in the
Newton-Raphson step, with the lower bound preventing the occurrence of extremely large
values of CZQELW. Robust implementations may alternatively employ quasi-Newton methods
such as BFGS or bounded optimization approaches to ensure numerical stability.

For data thought to contain a polynomial trend of order k, the procedure first removes
the trend via OLS regression on (1,t,¢2,...,t*), then applies the two-step estimator to
the residuals. The estimator is shown to be consistent following this detrending, but the
valid parameter range is restricted to dy € (—0.5,1.75), compared to dy € (—0.5,2) for the
unknown mean case. The procedure achieves the optimal N(0,1/4) limiting distribution
across these expanded ranges while maintaining robustness to both unknown means and
polynomial trends.

Table 6 presents our replication of the 2ELW estimator results from Shimotsu (2010),
demonstrating close agreement with the original simulation across the parameter range. The
2ELW estimator maintains excellent finite-sample properties with minimal bias and variances
near the asymptotic value of 1/(4m) = 0.0044 for m = 57. Performance remains stable across
stationary (d = 0.0,0.4) and nonstationary (d = 0.8,1.2) regions. The two-step procedure
successfully combines consistency of the first-stage tapered estimator with efficiency of the

second-stage exact approach.
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TABLE 6. 2ELW Estimator: Replication of
Table 2 of Shimotsu (2010)

Shimotsu (2010) Replication
d Bias Var Bias Var

0.0 —0.0022 0.0058 —0.0019 0.0057
0.4 0.0001 0.0058 0.0053 0.0066
0.8 —0.0003 0.0058 —0.0012 0.0058
1.2 —0.0006 0.0057 —0.0014 0.0060
Notes: 2ELW estimator, n = 512 observations

from ARFIMA(0,d,0), m = n%% = 57 frequen-
cies, 10,000 replications.

In this experiment we simply verify the basic theoretical properties, only considering
specifications from Table 2 of Shimotsu (2010) with p = 0. In Section 3, we will compare all
of the estimators discussed across a more thorough set of benchmarks including data with
AR(1) short-term dynamics (p > 0), unknown means, and time trends. In these simulations,

we will further investigate 2ELW’s robustness to such non-ideal data.

2.6. Extensions and Related Methods

While this paper focuses on univariate local Whittle methods for single-frequency estimation,
several important extensions should be mentioned. For multivariate time series, Nielsen
(2007) developed local Whittle estimation for fractionally cointegrated systems under the
assumption of stationarity and long-run exogeneity conditions. Shimotsu (2012) later
extended exact local Whittle estimation to fractionally cointegrated systems, enabling joint
modeling of long-memory processes with common stochastic trends. For seasonal and
cyclical long memory, Arteche (2020) generalized the ELW framework to handle multiple
spectral poles. Other recent advances have improved finite-sample performance through bias
reduction (Sykulski et al., 2019) and extended local Whittle methods to high-dimensional
settings (Baek et al., 2023). Practitioners requiring these specialized extensions will also
benefit from the comparative analysis of univariate methods that follows, since these methods
provide a foundation for the aforementioned extensions.

While we focus on standard asymptotic approximations in this paper, bootstrap methods
by Arteche and Orbe (2016) provide improved inference when asymptotic approximations
may be unreliable. Hou and Perron (2014) modified estimators to handle low-frequency
contaminations including random level shifts, deterministic level shifts, and deterministic
trends, while Wingert, Leschinski, and Sibbertsen (2020) handle seasonal contamination by

omitting affected frequencies.
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3. Monte Carlo Comparisons Across Methods

This section presents the results of a new and extensive Monte Carlo study comparing the
finite-sample performance of multiple local Whittle estimators under various data-generating
processes and model mis-specifications. We examine the impact of short-run dynamics,
unknown means, time trends, and varying degrees of fractional integration to provide
practical guidance on the relative merits and limitations of each method. These simulations,
along with our extended empirical results in Section 4, serve to inform the practical guidance

for researchers in Section 5.

3.1. Comprehensive Estimator Comparison with Short-Run Dynamics

To serve as a baseline, comprehensive, cross-estimator comparison, we revisit the Monte
Carlo design from Table I of Hurvich and Chen (2000). The experiment uses 500 repli-
cations of ARFIMA(1,d,0) processes with AR(1) short-run dynamics with autocorre-
lation parameter p, sample size n = 500, and bandwidth m = 56 (using the stan-
dard m = [n%%%] rather than Hurvich-Chen’s choice of m = 36 = [0.25n%%|). We
extend beyond the original study by comparing all five estimators we have considered:
LW, V = Velasco (Kolmogorov), HC = Hurvich-Chen, ELW, and 2ELW. Furthermore,
we evaluate these estimators over a wider range of 33 parameter combinations (d,p) €
{-2.2,-1.8,-1.2,-0.6,—-0.3,0.0,0.3,0.6,1.2,1.8,2.2} x {0.0, 0.5, 0.8}, providing a more com-
prehensive evaluation across the full range of fractional integration from deep antipersistence
to strong persistence. The results, reported in Table 7, reveal several key patterns regarding
the relative performance of estimators under short-run AR(1) dynamics.

In the absence of short-run dynamics (p = 0), the ELW estimator demonstrates superior
performance across all values of d, exhibiting minimal bias and consistently achieving the
lowest MSE values. The ELW estimator maintains bias within +0.003 and MSE below 0.007
across the entire range of d € [—2.2,2.2]. The 2ELW estimator has similar behavior, but
fails with large bias for antipersistent processes with d < —0.6. In contrast, the standard
LW estimator exhibits more severe deterioration at the boundaries, with bias reaching
—0.738 and MSE of 0.560 at d = 1.8, and further degradation to bias of —1.160 and MSE of
1.358 at the extreme value d = 2.2. The Velasco (V) estimator consistently demonstrates
positive bias an order of magnitude higher than other estimators in the valid range, while
the Hurvich-Chen (HC) estimator shows intermediate performance with generally smaller
bias than V but larger MSE than the exact methods.

The introduction of moderate AR(1) persistence (p = 0.5) alters the relative performance
landscape. All estimators experience upward bias, with the ELW and 2ELW methods
maintaining their advantage but now exhibiting bias around 0.100. The standard LW
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TABLE 7. Comprehensive Estimator Comparison

‘ Bias ‘ MSE
d p| LW \Y% HC ELW 2ELW | LW V. HC ELW 2ELW

-2.2 00| 1505 0.072 0.992 -0.002 1.198 | 2.359 0.032 1.064 0.006 1.505
-1.8 0.0 | 0991 0.057 0.548 -0.002 0.753 | 1.067 0.030 0.356 0.006  0.617
-1.2 0.0 | 0.318 0.039 0.111 -0.003  0.271 | 0.138 0.028 0.024 0.006  0.091
-0.6 0.0 | 0.020 0.031 0.025 -0.002 0.003 | 0.007 0.028 0.010 0.006  0.006
-0.3 0.0 | -0.002 0.024 0.011 -0.002 -0.004 | 0.006 0.027 0.010 0.006  0.006
0.0 0.0 | -0.007 0.026 0.005 -0.002 -0.002 | 0.006 0.027 0.010 0.006  0.006
0.3 0.0 | -0.006 0.024 -0.002 -0.002 -0.001 | 0.006 0.027 0.010 0.006  0.006
0.6 0.0 | 0.003 0.029 -0.007 -0.003 0.012 | 0.006 0.027 0.010 0.006  0.006
1.2 0.0 | -0.125 0.036 -0.008 -0.002 -0.002 | 0.022 0.028 0.010 0.006  0.006
1.8 0.0 | -0.738 0.063 0.004 -0.003 -0.003 | 0.560 0.031 0.009 0.006 0.006
22 00]-1160 0.095 0.038 -0.002 -0.002 | 1.358 0.036 0.011 0.006  0.006

-2.2 05| 1.318 0.191 0.881  0.100 1.088 | 1.825 0.063 0.847 0.016 1.248
-1.8 05| 0.843 0.178 0.487 0.100 0.693 | 0.778 0.058 0.275 0.016  0.515
-1.2 05| 0275 0.161 0.181  0.101 0.275 | 0.096 0.052 0.043 0.016  0.089
-0.6 05| 0.110 0.150 0.132 0.100  0.100 | 0.019 0.050 0.027 0.016 0.016
-0.3 05| 0.098 0.148 0.122 0.100  0.100 | 0.016 0.049 0.025 0.016  0.016
0.0 05| 0.094 0.145 0.114 0.100 0.100 | 0.015 0.048 0.023 0.016 0.016
03 05| 0.093 0.145 0.108 0.099 0.101 | 0.015 0.048 0.022 0.016 0.017
0.6 05| 0.102 0.147 0.104 0.100  0.105 | 0.017 0.048 0.021 0.016  0.016
1.2 0.5 ]-0.09 0.158 0.102 0.099 0.099 | 0.020 0.052 0.021 0.016 0.016
1.8 0.5 ]-0735 0.183 0.114 0.100  0.100 | 0.558 0.060 0.023 0.016 0.016
22 05 ]-1160 0.207 0.144 0.100 0.100 | 1.358 0.070 0.030 0.016  0.016

-2.2 08| 1.250 0.536 0.925 0.414 1.111 | 1.638 0.316 0.905 0.179 1.278
-1.8 0.8 | 0.824 0.526 0.632 0.417 0.792 | 0.723 0.306 0.418 0.181 0.649
-1.2 0.8 | 0475 0.513 0.483 0.417 0.457 | 0.234 0.294 0.243 0.181 0.215
-0.6 08| 0414 0.502 0.457 0.415 0.415 | 0.179 0.282 0.220 0.180 0.179
-0.3 0.8 ] 0.409 0.499 0.450 0.416 0.416 | 0.174 0.279 0.214 0.180 0.180
0.0 0.8 | 0.406 0.503 0.446 0.416 0.419 | 0.172 0.282 0.211 0.180 0.184
0.3 08| 0.406 0.499 0.441 0.417 0.419 | 0.172 0.279 0.206 0.181 0.183
0.6 08| 039 0.501 0.437 0.417 0.417 | 0.164 0.280 0.202 0.181 0.181
1.2 0.8 ]-0.035 0511 0435 0417 0.417 | 0.032 0.289 0.201 0.181 0.181
1.8 0.8 ]-0.731 0526 0441 0.416 0.416 | 0.558 0.304 0.205 0.181 0.180
2.2 08 -1.158 0.551 0.462 0.416 0.416 | 1.355 0.331 0.224 0.181 0.180

Notes: Monte Carlo results for ARFIMA(1,d,0) processes with n = 500, m = 56, 10,000
replications.

LW = Local Whittle, V = Velasco (Kolmogorov), HC = Hurvich-Chen, ELW = Exact Local
Whittle, 2ELW = Two-step ELW.
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estimator shows improved performance relative to the no-autocorrelation case for stationary
processes (d < 0.5) but continues to deteriorate for nonstationary processes, particularly
at d = 1.8 where bias remains at —0.735, and at the extreme value d = 2.2 where bias
reaches —1.160. The Velasco estimator exhibits bias of approximately 0.150 across d values,
maintaining its stability but at an elevated level. The HC estimator again shows intermediate
performance with bias generally increasing with |d| as before, but with larger bias for large
negative d values.

Under strong AR(1) persistence (p = 0.8), all estimators suffer performance degradation,
with bias for central |d| values exceeding 0.40 for most methods and MSE values increasing
by an order of magnitude. The ELW estimator maintains the smallest bias uniformly at
approximately 0.416, while the Velasco estimator exhibits bias around 0.500 for most values.
The LW estimator demonstrates erratic behavior, with bias ranging from —1.158 at d = 2.2
to 1.250 at d = —2.2, exhibiting instability at the boundaries. As before, the 2ELW estimator
performs similarly to ELW across central values of d, but fails for large negative d.

Regarding robustness to AR(1) dynamics, the exact methods (ELW and 2ELW) demon-
strate stability, degrading gracefully as autocorrelation increases. The Velasco estimator
exhibits consistent but systematically biased performance, while the HC estimator shows
intermediate robustness. The standard LW estimator proves most vulnerable to both high
values of d and autocorrelation, suggesting limited applicability when short-run dynam-
ics are present. At extreme parameter values (d € [—2.2,2.2]), performance differences
become magnified: the exact methods maintain robustness, while LW becomes unreliable
and even the Velasco and HC estimators show degradation. These findings indicate that
practitioners should favor exact methods when AR(1) dynamics may be present, unless

strong anti-persistence is expected, in which case the 2ELW estimator should be avoided.

3.2. Robustness to Unknown Mean

Next we examine estimator sensitivity to unknown population means, comparing performance
across mean correction strategies. Table 8 presents results for ARFIMA(0, d, 0) processes
across d € [—2.2,2.2] with zero mean (¢ = 0) or nonzero mean (u = 5), evaluating three mean
correction approaches: no correction (fi = 0), sample mean (i = X), and first-observation
(i = X1). Note that 2ELW is applied in its standard form to the mean-corrected data,
which means that it still applies its own adaptive mean correction in all cases (including the
case of no mean correction).

In the top panel, without mean correction, the nonzero mean reveals differences in
robustness. The Velasco estimator demonstrates remarkable stability, with MSE values
virtually identical across all d values regardless of u, suggesting inherent robustness to level

shifts. Similarly, the LW, HC, and 2ELW estimators are largely unaffected by the presence
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TABLE 8. Robustness to Unknown Mean

| p=0 | p=>5
d| IW VvV  HC ELW 2ELW | LW V  HC ELW 2ELW

Mean correction: i =0 (None)

-2.2 | 2359 0.032 1.064 0.006 1.505 | 2.363 0.032 1.056 8.525  1.499
-1.8 | 1.074 0.030 0.351 0.006 0.615 | 1.074 0.029 0.352 6.308 0.615
-1.2 | 0.139 0.028 0.024 0.006 0.091 | 0.136 0.028 0.024 3.287  0.090
-0.6 | 0.007 0.027 0.010 0.006 0.006 | 0.007 0.027 0.010 0.835 0.006
-0.3 | 0.006 0.028 0.010 0.006 0.006 | 0.006 0.027 0.010 0.206 0.006
0.0 | 0.006 0.026 0.010 0.006 0.006 | 0.006 0.027 0.010 0.035 0.006
0.3 | 0.006 0.027 0.010 0.006 0.006 | 0.006 0.027 0.010 0.085 0.006
0.6 | 0.007 0.027 0.010 0.006 0.006 | 0.006 0.027 0.010 0.015 0.006
1.2 | 0.022 0.028 0.010 0.006 0.006 | 0.022 0.028 0.010 0.006 0.006
1.8 | 0.557 0.031 0.009 0.006 0.006 | 0.556 0.031 0.009 0.006 0.006
2.2 | 1.357 0.035 0.011 0.006 0.006 | 1.355 0.035 0.011 0.006 0.006

Mean correction: i = X

-2.2 | 2343 0.032 1.063 2.089 1.497 | 2.354 0.031 1.054 2.096 1.492
-1.8 | 1.075 0.029 0.353 0.979 0.618 | 1.065 0.029 0.354 0973 0.618
-1.2 | 0.136  0.027 0.024 0.120 0.090 | 0.138 0.028 0.024 0.121  0.091
-0.6 | 0.007 0.027 0.010 0.006 0.006 | 0.007 0.027 0.010 0.006 0.006
-0.3 | 0.006 0.028 0.010 0.006 0.006 | 0.006 0.027 0.010 0.006 0.006
0.0 | 0.006 0.027 0.010 0.006 0.006 | 0.006 0.027 0.010 0.006 0.006
0.3 | 0.006 0.027 0.010 0.006 0.006 | 0.006 0.027 0.010 0.006 0.006
0.6 | 0.006 0.028 0.010 0.006 0.006 | 0.006 0.027 0.010 0.006 0.005
1.2 | 0.022 0.028 0.010 0.012 0.006 | 0.022 0.028 0.009 0.012 0.006
1.8 | 0.559 0.030 0.009 0.427 0.006 | 0.558 0.031 0.009 0.425 0.006
2.2 1 1356 0.035 0.011 1.126 0.006 | 1.356 0.035 0.011 1.122  0.006

Mean correction: i = X

-2.2 | 2364 0.031 1.071 4.845 1.510 | 2.346 0.032 1.053 4.826 1.495
-1.8 | 1.062 0.030 0.348 3.130 0.609 | 1.068 0.030 0.348 3.122 0.611
-1.2 | 0.135 0.029 0.024 1.297 0.090 | 0.137 0.028 0.024 1.296 0.090
-0.6 | 0.007 0.028 0.010 0.279 0.006 | 0.007 0.028 0.010 0.279 0.006
-0.3 | 0.006 0.027 0.010 0.058 0.006 | 0.006 0.027 0.010 0.057 0.006
0.0 | 0.006 0.027 0.010 0.003 0.006 | 0.006 0.026 0.009 0.003 0.006
0.3 | 0.006 0.028 0.010 0.010 0.006 | 0.006 0.027 0.010 0.009 0.006
0.6 | 0.006 0.026 0.010 0.006 0.006 | 0.006 0.027 0.010 0.006 0.006
1.2 | 0.022 0.028 0.010 0.006 0.006 | 0.022 0.027 0.010 0.006 0.006
1.8 | 0.556 0.031 0.009 0.006 0.006 | 0.559 0.030 0.009 0.006 0.006
2.2 1 1.353 0.034 0.010 0.006 0.006 | 1.358 0.036 0.011 0.006 0.006

Notes: MSE results for ARFIMA(0, d,0) with n = 500, m = 56, 10,000 replications.
LW = Local Whittle, V = Velasco (Kolmogorov), HC = Hurvich-Chen, ELW = Exact
Local Whittle, 2ELW = Two-step ELW.
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of the nonzero mean, but HC has large bias for antipersistent processes and LW is biased for
large |d| in both cases. Recall that 2ELW includes its own mean correction, but as before it
is biased for antipersistent processes (for zero mean and positive mean). In contrast, ELW
exhibits severe asymmetric sensitivity: severe degradation for antipersistent processes (MSE
increasing from 0.006 to 8.525 at d = —2.2) but full robustness for d > 0.6.

In the middle panel, we consider sample mean correction (i = X). We can see that
applying this correction when unnecessary (@ = 0) can be harmful. For ELW, it damages
performance at both extremes: MSE increases above 2.089 at d = —2.2 and 1.126 at d = 2.2,
while central values remain robust. Even when the true mean is nonzero (1 = 5), demeaning
is detrimental to ELW performance when d > 1.2. The other estimators appear to be robust
to this correction.

In the bottom panel, we see the effects of first-observation correction (i = X1). Again, all
estimators except ELW are largely unaffected. For ELW, the negative effects in this case are
asymmetric: when the correction is unnecessary (u = 0), subtracting the first observation is
harmful only for d < 0, with MSE reaching 4.845 at d = —2.2, but performance is unaffected
for d > 0. This correction strategy avoids the problems with X for large positive d.

Overall, these results demonstrate that the Velasco tapered LW estimator provides
remarkable robustness to unknown means—corrected or not—across the full range of d
values. LW, HC, and 2ELW are largely unaffected, but have ranges of d values where they
perform much worse than Velasco. For ELW, the best mean correction critically depends
on the expected range of d, which is precisely the intuition behind the 2ELW estimator’s

adaptive mean correction.

3.3. Robustness to Linear Time Trends

Finally, the Monte Carlo results in Table 9 examine the sensitivity of estimators to the
presence of linear time trends, comparing performance with and without trend contam-
ination across the extended parameter range d € [—2.2,2.2]. The experiment considers
ARFIMA(1,d,0) processes with no AR dynamics (p = 0) under two scenarios: no trend
(8 =0.0) and linear trend (5 = 0.05), evaluating performance both without trend correction
and with linear OLS detrending.

With no trend correction (top panel), the presence of a linear trend (8 = 0.05) affects the
LW estimator most severely, followed by ELW. For antipersistent processes, both estimators
show catastrophic performance degradation, with MSE at d = —2.2 increasing from 2.359
to 10.168 for LW and from 0.006 to 8.977 for ELW. The sensitivity of both estimators to
the trend diminishes as d increases. This asymmetric pattern mirrors the unknown mean
results, confirming that ELW’s vulnerability to these specification errors is primarily for

antipersistent processes. In contrast, the Velasco and Hurvich-Chen estimators maintain
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TABLE 9. Robustness to Time Trend

| B=00 | 8=0.05
d| LW \Y HC ELW 2ELW | LW \Y HC ELW 2ELW

Trend correction: None

-2.2 | 2359 0.032 1.064 0.006 1.505 | 10.168 0.032 1.071 8.977 1.641
-1.8 | 1.072 0.030 0.351 0.006 0.613 7.765 0.030 0.351 6.720 0.691
-1.2 | 0.136 0.028 0.024 0.006 0.089 4.757 0.028 0.024 3.891 0.145
-0.6 | 0.007 0.027 0.010 0.006 0.006 2.464 0.028 0.010 1.792 0.086
-0.3 | 0.006 0.027 0.010 0.006 0.006 1.592  0.027 0.010 1.038 0.080
0.0 | 0.006 0.028 0.010 0.006 0.006 0.905 0.027 0.010 0.489 0.075
0.3 | 0.006 0.028 0.010 0.006 0.006 0.409 0.027 0.010 0.149 0.072
0.6 | 0.006 0.027 0.010 0.006 0.006 0.110 0.026 0.010 0.014 0.019
1.2 | 0.022 0.028 0.010 0.006 0.006 0.023 0.028 0.010 0.006 0.006
1.8 | 0.556 0.031 0.009 0.006 0.006 0.558  0.031 0.009 0.006 0.006
2.2 | 1.357 0.035 0.011 0.006 0.006 1.363 0.035 0.011 0.006 0.006

Trend correction: linear OLS detrending

-2.2 | 2535 0.032 1.063 2427 1.523 2.556  0.032 1.056 2.448 1.524
-1.8 | 1.198  0.030 0.349 1.163 0.619 1.209 0.029 0.353 1.173 0.625
-1.2 | 0.180 0.028 0.024 0.177 0.102 0.176  0.028 0.023 0.173  0.100
-0.6 | 0.008 0.027 0.010 0.006 0.006 0.008 0.027 0.010 0.007 0.007
-0.3 | 0.007 0.027 0.010 0.007 0.007 0.006 0.027 0.010 0.006 0.006
0.0 | 0.007 0.027 0.010 0.007 0.007 0.007  0.027 0.010 0.007 0.007
0.3 | 0.008 0.027 0.010 0.007 0.007 0.007 0.027 0.010 0.007 0.007
0.6 | 0.008 0.027 0.010 0.007 0.007 0.008 0.027 0.010 0.007  0.007
1.2 | 0.015 0.028 0.010 0.009 0.006 0.014  0.027 0.009 0.009 0.006
1.8 | 0.324 0.030 0.009 0.322  0.006 0.319 0.031 0.009 0.321  0.006
2.2 10878 0.035 0.011 1.024 0.011 0.880 0.036 0.011 1.027 0.011

Notes: MSE results for ARFIMA(1,d,0) with p = 0.0, n = 500, m = 56, 10,000
replications.

LW = Local Whittle, V = Velasco (Kolmogorov), HC = Hurvich-Chen, ELW = Exact
Local Whittle, 2ELW = Two-step ELW.
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remarkable stability, with MSE values remaining essentially unchanged in the presence of
the trend.

Detrending by OLS (bottom panel) effectively neutralizes the impact of the linear trend
for the standard LW estimator. Velasco and HC were already largely unaffected by it,
and their performance is not hurt by detrending. However, the ELW estimator continues
to exhibit sensitivity at the extreme boundaries. In the presence of a trend (8 = 0.05),
detrending improves ELW performance for antipersistent processes (d < 0), but significant
bias remains. However, detrending hurts ELW performance for highly persistent processes
(d > 1.8), even when no trend is present (f = 0). As with the unknown mean, 2ELW
performs well for most values of d but struggles with antipersistence.

These results highlight a crucial practical finding: the Velasco and Hurvich-Chen tapered
estimators provide exceptional robustness to linear deterministic trends without requiring
any preprocessing, while the standard and exact local Whittle methods require careful trend

correction strategies that depend on the unknown memory parameter.

8.4. Sampling Distribution Comparison

To conclude our examination of the finite sample behavior of local Whittle estimators
across a wide range of memory parameters, we revisit the extensive baseline Monte Carlo
analysis from Section 3.1. Figure 1 presents kernel density estimates of the sampling
distributions for five estimators—LW, Velasco, HC, ELW, and 2ELW-—based on 10,000
replications of ARFIMA (0, d,0) processes with n = 500 observations and bandwidth m =
|n%6%]. The analysis spans six representative values of the memory parameter: d €
{-1.2,-0.4,0.0,0.4,1.0,1.6}, covering antipersistent, stationary long memory, and strongly
persistent processes.

The distributions reveal systematic patterns in estimator performance across different
persistence regimes, verifying the theoretical results discussed in Section 2. For stationary
values (|d| < 0.5), all estimators exhibit approximately symmetric distributions centered
near the true parameter, with the tapered estimators (Velasco and HC) showing increased
dispersion relative to the efficient LW, ELW, and 2ELW estimators. The Velasco tapered
estimator exhibits the highest variance and also shows some positive bias. Even for unit root
processes (d = 1.0), the standard LW estimator remains well-behaved. For the nonstationary,
explosive process (d = 1.6), the LW estimator is inconsistent and its distribution remains
centered around d = 1.0, while the exact methods (ELW and 2ELW) maintain their
concentration around the true values. In this simulation, with zero mean and no time trend,
the ELW estimator exhibits the most robust performance across all regimes, including the
strongly nonstationary case with d = 1.6 and the antipersistent case with d = —1.2. For

the d = —1.2 case specifically, we see a deterioration of performance due to a breakdown of
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theoretical validity of each of the other estimators. LW has a large positive bias and high
dispersion. 2ELW is also biased upward, with a mean around —0.9. The Velasco and HC
tapered LW estimators perform better, but also exhibit some bias. Only the ELW estimator
remains largely unbiased and tightly concentrated around the true value of d = —1.2.
While these Monte Carlo experiments provide controlled evidence about the performance
of these estimators under known data-generating processes, we next evaluate the methods
with real economic data, where the memory parameter is unknown and the data may violate
the ideal assumptions. The following section turns to empirical applications, replicating key
results from the literature to demonstrate how each method behaves with real-world data

and to validate our Python implementation.

4. Extended Empirical Applications

This section demonstrates the practical aspects of local Whittle method selection, and vali-
dates the PyELW implementation, by replicating key empirical analyses from the literature.
We revisit results from Hurvich and Chen (2000), Shimotsu (2010), and Baum et al. (2020),
examining how different estimators yield varying conclusions about persistence in economic,

financial, and environmental time series.

4.1. Replication of Hurvich and Chen (2000) Table 11T

As our first empirical comparison, we revisit the analysis in Table III of Hurvich and Chen
(2000). The authors apply their complex tapered estimator to seven real-world datasets
including both economic and environmental time series as shown in Table 10. The global
temperature data consist of seasonally adjusted monthly temperatures for the northern
hemisphere from 1854-1989, representing deviations from monthly averages over 1950-1979
(Beran, 1994). The S&P 500 series contains natural logarithms of daily composite stock
index levels from July 1962 to December 1995. The remaining series are monthly economic
indicators from January 1957 to December 1997 sourced from the International Monetary
Fund’s International Financial Statistics, including CPI-based inflation rates for the U.S.,
U.K., and France (computed as differences of the logarithms of CPI), the logarithm of U.S.
real manufacturing wages, and the logarithm of U.S. industrial production. All economic
series are seasonally adjusted.

Table 10 compares the original Hurvich and Chen (2000) estimates (for HC only) with
our results comparing all estimators produced using our PyELW-based implementation. For
all estimators, we use the same number of frequencies m as in the original study. For the
HC tapered LW estimator, the agreement between our results and the original estimates

is excellent across all datasets, with differences typically at the third decimal place or
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FIGURE 1. Sampling distributions of local Whittle estimators with n = 500 over 10,000
replications
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TABLE 10. Hurvich and Chen (2000) Datasets: LW Estimator Comparison

| HC (2000) | Replication
Series n m | HC | LW \Y% HC ELW  2ELW
Global temp. 1632 130 0.450 0.496 0442 0451 0495 0471
(0.060) | (0.046) (0.076) (0.060) (0.045) (0.044)
S&P 500 8432 1383 |  0.990 0.980 0978 0972 0986  0.983
(0.018) | (0.014) (0.023) (0.017) (0.013) (0.013)
Inflation, US 491 40 0.570 0.626  0.662 0563  0.643  0.635
(0.123) | (0.080) (0.137) (0.121) (0.082) (0.079)
Inflation, UK~ 491 40 0.330 0462 0494 0339 0467  0.468
(0.123) | (0.072) (0.137) (0.121) (0.074) (0.079)
Inflation, FR 491 40 0.670 0462  0.819 0682 0499  0.450
(0.123) | (0.083) (0.137) (0.121) (0.087) (0.079)
Real wages, US 492 35 1.430 1.065 1560 1426  1.001  1.287
(0.121) | (0.096) (0.147) (0.132) (0.102) (0.085)
Ind. prod., US 492 100 1.340 0.999  1.311  1.363  1.004  1.312
(0.075) | (0.054) (0.087) (0.071) (0.058) (0.050)

HC (2000) column reports original results from Table III of Hurvich and Chen (2000).
Number of frequencies m match values used by Hurvich and Chen (2000).

Standard errors in parentheses based on Fisher information.

LW = Local Whittle, V = Velasco (Kolmogorov), HC = Hurvich-Chen, ELW = Exact Local
Whittle, 2ELW = Two-step ELW.

smaller. For U.S. real wages, the small differences likely reflect our use of FRED data
for average hourly earnings of production and nonsupervisory employees in manufacturing
(CES3000000008) divided by CPI, as the original IMF real wages series is no longer available.

In terms of the economic implications of these estimates, there is broad agreement across
estimators. Global temperatures exhibit moderate long memory, with d e [0.442,0.496]
indicating persistent but stationary dynamics. The S&P 500 index displays near-unit
root behavior, where d e [0.972,0.990] aligns with the efficient market hypothesis. The
inflation series reveal heterogeneous persistence across countries: U.S. inflation has moderate
persistence, with d € [0.563,0.662], while U.K. inflation shows somewhat weaker dependence,
with d € [0.330,0.494]. The five estimators give a mixed picture of inflation persistence in
France, with a wide range of estimates de [0.450,0.819].

U.S. real wages display strongly nonstationary behavior, with de [1.001, 1.560] suggesting
that wage shocks have permanent effects. The lower estimates from LW (1.065) are consistent
with the negative bias exhibited by LW when d > 1 as shown in our Monte Carlo results, while
ELW’s low estimate (1.001) may reflect convergence to a local minimum in its non-convex
objective function rather than the global optimum found by the tapered methods and 2ELW.
Similarly, industrial production shows evidence of nonstationarity, with d € [0.999 — 1.363]
indicating that productivity shocks generate persistent growth effects (again with LW and
ELW as outliers). These results add nuance to the traditional classifications of economic

series as either I(0) or I(1), underscoring the empirical relevance of fractional integration
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models.

4.2. Replication of Empirical Results of Shimotsu (2010)

Our second empirical comparison replicates results from Shimotsu (2010), who applied the
2ELW estimator to the classic Nelson and Plosser (1982) dataset extended through 1988 by
Schotman and van Dijk (1991). This dataset contains 14 key U.S. macroeconomic series
spanning 1860-1988, with sample sizes varying from 80 to 129 observations depending on
data availability for each series.

As before, we extend the application by comparing all five estimators considered. To
match the original analysis, we modify the LW estimation by first differencing the data,
estimating d — 1 using the standard LW estimator, then adding unity to the resulting
estimate. Additionally, for the 2ELW estimator, we follow Shimotsu (2010) and first use
OLS to remove any nonzero mean and linear time trend and we use bandwidth m = n%7 as
in the original paper.?

Table 11 presents the original estimates from Shimotsu (2010) along with the replication
from our Python implementation. The replication accuracy is very high: we achieve exact
matches (to three decimal places) for the LW estimates on 12 of 14 series and for the 2ELW
estimator on 10 of 14 series. The most notable discrepancy occurs for the unemployment
rate series. We observe n = 99 for unemployment while Shimotsu (2010) reports n = 129,
but we were not able to determine the reason for this difference.

Our replication confirms the key empirical findings of Shimotsu (2010). The estimates
for real GNP, real per capita GNP, employment, real wage, velocity of money, and stock
prices are near d = 1, consistent with unit root behavior. For the GNP deflator, CPI, and
nominal wage, estimates substantially exceed unity (d > 1.3), confirming that inflation series
exhibit I(d) behavior with d € (0,1) when expressed in first differences. All series appear to
exhibit fractional integration.

Although there is broad agreement across methods, it is apparent that ELW has some
difficulty with certain series (e.g., Real GNP), often reporting spuriously low values. For
these results, we did not apply any additional pre-processing. 2ELW is robust to unknown
means and time trends, but ELW is not. To investigate this further, we plot the objective
functions for each estimator in Figure 2. We can see that LW objective functions (LW, V, HC)
are convex with a single global minimum. These differ in the location of the minimum—recall
that LW is only valid for stationary models—but have the same overall shape. The ELW
and 2ELW objective functions are fundamentally different. They are non-convex and have
multiple local minima. Up to d = 0.5 they coincide exactly. At d = 0.5, the piecewise
adaptive weight function defined in (6) begins to apply positive weight to i = X;. This

*We discovered that using round(n®7) rather than floor(n®") was required to match the results.
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TaBLE 11. Extended Nelson and Plosser Data: LW Estimator Comparison

| Shimotsu (2010) Replication
Series n m| LW 2ELW | LW \Y% HC ELW  2ELW
Real GNP 80 21 | 1.077 1.126 1.077 1.424 1.268 0.135 1.126
(0.109)  (0.109) | (0.109) (0.189) (0.134) (0.109) (0.109)
Nominal GNP 80 21 | 1.273 1.303 1.273 1.479 1.375 0.122 1.303

(0.109) (0.109) | (0.109) (0.189) (0.134) (0.109) (0.109)
Real per capita GNP 80 21 1.077 1.128 1.077 1.470 1.287 0.054 1.127
(0.109) (0.109) | (0.109) (0.189) (0.134) (0.109) (0.109)
Industrial production 129 30 | 0.821 0.850 0.821 0.975 0.946 0.919 0.850
(0.091) (0.091) | (0.091) (0.158) (0.112) (0.091) (0.091)
Employment 99 25 | 0.968 1.000 1.007 1.315 1.188 0.041 1.055
(0.102)  (0.102) | (0.100) (0.174) (0.122) (0.100) (0.100)
Unemployment rate® 99 25| 0.951 0.980 0.698 0.960 0.911 0.875 0.741
(0.091) (0.091) | (0.100) (0.174) (0.122) (0.100) (0.100)

GNP deflator 100 25| 1.374 1.398 1.374 1.376 1.364 0.240 1.398
(0.100)  (0.100) | (0.100) (0.174) (0.122) (0.100) (0.100)
CPI 129 30 1.273 1.287 1.273 1.375 1.308 1.112 1.287
(0.091) (0.091) | (0.091) (0.158) (0.112) (0.091) (0.091)
Nominal wage 89 23 1.300 1.351 1.300 1.409 1.435 0.165 1.351
(0.104)  (0.104) | (0.104) (0.181) (0.128) (0.104) (0.104)
Real wage 89 23| 1.047 1.089 1.047 1.298 1.282 0.138 1.089
(0.104)  (0.104) | (0.104) (0.181) (0.128) (0.104) (0.104)
Money stock 100 25 1.460 1.501 1.460 1.528 1.578 0.760 1.501
(0.100)  (0.100) | (0.100) (0.174) (0.122) (0.100) (0.100)
Velocity of money 120 29 | 0.953 0.993 0.969 0.753 0.722 1.004 1.001
(0.095)  (0.095) | (0.093) (0.161) (0.114) (0.093) (0.093)
Bond yield 89 23 1.091 1.108 1.091 1.171 1.121 0.967 1.108
(0.104)  (0.104) | (0.104) (0.181) (0.128) (0.104) (0.104)
Stock prices 118 28 0.900 0.958 0.900 0.808 0.922 0.930 0.958

(0.095)  (0.095) | (0.094) (0.164) (0.116) (0.094) (0.094)

Shimotsu (2010) columns report original results from Table 8 of Shimotsu (2010).
Bandwidth m = |_n0'70j. Asymptotic standard errors in parentheses.
LW = Local Whittle, V = Velasco (Kolmogorov), HC = Hurvich-Chen, ELW = Exact Local Whittle,
2ELW = Two-step ELW.
# Shimotsu (2010) reports 129 observations for this series, while we observe 99.
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FIGURE 2. Local Whittle objective functions for U.S. Real GNP

leads the 2ELW objective function to diverge from the ELW objective function. The weight
fully shifts away from i = X to i = X at d = 0.75, precisely where the 2ELW objective
function has another kink. The first-step estimation via HC provides a consistent estimator
and a good starting value for optimization of the 2ELW objective function, which avoids the
spurious ELW /2ELW local minimum at 0.135 and instead locates the 2ELW global minimum
at 1.126. Despite the simple scalar nature of these objective functions, this highlights the
difficulty of finding a guaranteed global minimum without an exhaustive search.

Overall, these findings support the empirical relevance of fractional integration models
for macroeconomic time series and validate the practical utility of the local Whittle approach
for applied research, while also highlighting the importance for accounting for unknown

means and time trends in macroeconomic data.

4.3. Replication of Baum, Hurn, and Lindsay (2020)

As a final replication and validation of PyELW'’s results we reproduce the LW and ELW
estimates reported in Baum et al. (2020), which introduced the whittle command for Stata.
Their examples involve two classic long-memory datasets: annual Nile River minimum levels
(N =663, 622-1284) and monthly global sea levels (N = 1,558, 1880-2009). These datasets
exhibit features of fractional integration, and they prove to be useful benchmarks.

Table 12 presents the original Stata results reported by Baum et al. (2020) along side our
replicated results using PyELW. For each dataset and preprocessing® approach (demeaning

only vs. demeaning and detrending), we compare both LW and ELW estimates using

%We note that the Stata whittle command always demeans the data (i.e., it is not optional) and will
optionally also detrend the data when requested.
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identical bandwidth selections. The replication achieves a high degree of accuracy across all
specifications, with exact agreement for point estimates, standard errors, and asymptotic

standard errors.

TABLE 12. Replication of empirical results from Baum, Hurn, and Lindsay (2020)

Specification BHL (2020) PyELW Results

Transform Estimator —m d S.E. AsyS.E. d S.E. AsyS.E.

Nile River Data (N = 663)
Demeaned LW 68 0.409 0.062  0.060 0.409 0.062  0.060
Demeaned ELW 68 0.407 0.062  0.060 0.407 0.062  0.060
Detrended LW 68 0.394 0.065  0.060 0.394 0.065  0.060
Detrended ELW 68 0.397 0.066  0.060 0.397 0.066  0.060

Sea Level Data (N = 1,558)
Demeaned LW 118 0.859 0.044  0.046 0.859 0.044  0.046
Demeaned ELW 118 0.802 0.035  0.046 0.802 0.035  0.046
Detrended LW 39 0.551 0.081  0.080 0.551 0.081  0.080
Detrended LW 118 0.454 0.042 0.046 0.454 0.042 0.046
Detrended ELW 39 0.524 0.079  0.080 0.524 0.079  0.080
Detrended ELW 118 0.486 0.044  0.046 0.486 0.044  0.046

The table compares LW and ELW estimates using identical datasets and specifications.
Original results from Stata whittle command compared with PyELW results.

The sea level results raise important practical considerations for long-memory estimation.
The demeaned specification yields high memory parameter estimates (a? ~ 0.8), reflecting
the strong deterministic trend in the data. Detrending substantially reduces these estimates
to more plausible values (ci ~ 0.5), consistent with stationary long-memory behavior. This
demonstrates the importance of handling potentially nonzero means and time trends when
analyzing real data, underscoring the problems leading Shimotsu (2010) to develop the 2ELW
estimator. Finally, the exact agreement between the original Stata results and those of
PyELW provide evidence of the accuracy of the implementations and underlying algorithms

across both statistical computing platforms.

5. Practical Guidance for Practitioners

Building on the theoretical properties discussed in Section 2, the comprehensive Monte
Carlo evidence presented in Section 3, and the extended empirical analysis of Section 4,
this section distills these findings to provide practical recommendations for selecting and
implementing local Whittle estimators in applied research. We emphasize that no single
estimator dominates across all scenarios we considered, and so practitioners should take into

account the characteristics of their data when choosing among the methods.
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5.1. Expected Parameter Range

The valid parameter range represents the primary consideration in method selection. For
processes believed to be stationary (d < 0.5), the standard LW estimator provides opti-
mal efficiency with minimal computational burden. However, our Monte Carlo evidence
demonstrates that LW exhibits severe bias for |d| > 1.0. For potentially nonstationary series
where |d| may exceed 1.0, practitioners should employ either the ELW or 2ELW estimators.
ELW maintains consistency across the unrestricted range d € (—o0,0), provided that
the optimization interval has width less than 9/2, but is sensitive to the mean and trend
specification. The 2ELW provides automatic mean and trend removal with better robustness
to local minima, though with restricted range d € (—0.5,2) and increased computational
cost. The tapered estimators offer intermediate solutions: they extend the valid parameter

range compared to LW, but at the cost of increased variance.

5.2. Robustness to Short-Run Dynamics

Our Monte Carlo evidence demonstrates that AR(1) dynamics affect all local Whittle
estimators, inducing positive bias that increases with the autocorrelation parameter. For
moderate autocorrelation (p = 0.5), the exact methods (ELW and 2ELW) maintain their
relative advantage, while stronger dynamics (p = 0.8) push bias higher for all methods. The
Velasco estimator exhibits predictable degradation, maintaining consistent bias levels across
d values, while the standard LW estimator becomes particularly unreliable at the boundaries.
When short-run dynamics are suspected, practitioners should: (1) expect all estimates to be
biased upward; (2) favor ELW or 2ELW for their relative robustness, unless antipersistence is
suspected (where 2ELW fails); and (3) use more conservative (smaller) bandwidth selections

to reduce contamination from higher frequencies where short-run dynamics dominate.

5.8. Accounting for Unknown Means and Time Trends

Our Monte Carlo results reveal important differences in robustness to deterministic compo-
nents across estimators. The ELW estimator exhibits high sensitivity to nonzero means and
linear trends, particularly for antipersistent processes (d < 0), where MSE can increase by
many orders of magnitude. This vulnerability appears to be asymmetric: catastrophic for
d < —0.6 but negligible for d > 0.0. When analyzing data with potential nonzero means
or trends, practitioners face several options: (1) use the 2ELW estimator with automatic
mean and trend removal, with range restricted to d € (—0.5,1.75) when detrending; (2)
apply the Velasco or HC tapered estimators, which demonstrate exceptional robustness to
both unknown means and trends without preprocessing, at the expense of efficiency; (3) for

suspected trends, preprocess with OLS detrending before applying LW, which effectively
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restores LW’s performance; or (4) preprocess before ELW, though this only partially miti-
gates sensitivity at extreme parameter values and can introduce problems when unnecessary.
We reiterate that blindly demeaning or detrending when unnecessary can be detrimental,

particularly for ELW with large values of |d].

5.4. Diagnostic Strategy Using Multiple Estimators

Given the complementary strengths and weaknesses of different methods, we recommend
estimating d using multiple approaches as a diagnostic strategy. Substantial disagreement
between estimators often signals specific sample characteristics requiring attention. For
instance, if LW yields d ~ 1.0 while ELW produces d> 1.5, this pattern suggests true
nonstationarity beyond LW’s valid range. Conversely, large negative ELW estimates (e.g., d<
—1) while other methods yield values closer to zero could indicate true strong antipersistence,
as Figure 1 demonstrates that only ELW remains unbiased for extreme negative values
like d = —1.2, where other estimators exhibit substantial upward bias. However, if such
negative ELW estimates seem implausible given the economic context, they may instead
signal contamination from nonzero means or trends, which our Monte Carlo results show

can severely affect ELW for negative d.

5.5. Bandwidth Selection Considerations

The bandwidth parameter m determines the number of frequencies used in estimation and
its choice affects the bias-variance trade-off in local Whittle estimation. While Henry and
Robinson (1996) established the mean squared error-optimal rate of m oc n%®, the constant
of proportionality is not known. Furthermore, this assumes no contamination from short-run
dynamics and may be too optimistic for real data. Monte Carlo and empirical work in the
literature has converged on the more conservative choice m = |n%0°| as a practical standard.
This rate, used by Shimotsu and Phillips (2005) and Shimotsu (2010) in their simulations
and implemented as the default in both PyELW and Stata’s whittle command (Baum
et al., 2020), provides additional robustness to model misspecification. Economic time series
typically exhibit short-run dynamics that contaminate higher frequencies in finite samples.
In empirical examples, Shimotsu (2010) used the slightly less conservative m = n%7. We
recommend that, at a minimum, researchers carry out a sensitivity analysis across m = n®
for a € [0.6,0.8]. Beyond simple power rules, Baillie et al. (2014) proposed cross-validation
approaches focused on forecasting performance while Arteche and Orbe (2017) developed a
bandwidth selection strategy based on minimizing a bootstrap approximation of the mean

square error.
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5.6. Computational and Optimization Issues

The non-convex objective functions of ELW and 2ELW, as illustrated in Figure 2, present
computational challenges not encountered with standard LW. These methods can exhibit
multiple local minima and for 2ELW the adaptive weighting function introduces kinks.
Large disagreement in estimates across methods, with spuriously low ELW estimates, could
indicate convergence to a local optimum rather than mean or trend contamination which
typically inflates ELW estimates. The 2ELW’s preliminary tapered estimation provides
a consistent starting value that helps avoid spurious local minima, though at the cost of

additional computational time and complexity from the two-stage procedure.

5.7. Recommended Empirical Approach

Based on our analysis, we propose the following practical approach:

1. Apply multiple estimators to obtain initial estimates and identify potential issues

through their disagreement patterns.

2. Interpret disagreements diagnostically: LW bounded near unity with higher ELW /2ELW
suggests d > 1; large negative ELW with others near zero indicates either true antiper-
sistence or contamination; low ELW relative to tapered methods indicates possible

ELW local minima.

3. Select your primary estimator based on the diagnosed parameter range and data

characteristics.

4. Conduct sensitivity analysis using different bandwidths (m = n® for a € [0.6,0.8]) and

preprocessing choices.

5. Report multiple estimates when several methods are valid, acknowledging uncertainty

in the memory parameter.

This approach leverages the strengths of the different estimators while providing diagnos-
tic information about potential data issues, ultimately leading to more robust and reliable

inference about long-memory parameters.

6. Conclusion

This paper has provided a comprehensive evaluation of local Whittle methods for estimating
the memory parameter in fractionally integrated time series, addressing a gap in the applied
literature where practitioners face multiple estimators without clear guidance on their relative

merits.
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Our extensive Monte Carlo experiments and empirical replications reveal fundamental
trade-offs among methods. The standard LW estimator provides optimal efficiency for
stationary processes but exhibits bias for |d| > 1. ELW achieves excellent performance
across the entire parameter space under ideal conditions, but suffers extreme sensitivity
to nonzero means and trends, particularly for antipersistent processes where MSE can
increase by orders of magnitude. The 2ELW estimator mitigates this through adaptive mean
correction but restricts the valid parameter range and also fails for strong antipersistence.
The Velasco and Hurvich-Chen tapered estimators demonstrate remarkable robustness to
both unknown means and deterministic trends without preprocessing, though with increased
variance relative to the efficient methods.

Through systematic replication of key results from the literature, we validate the PyELW
implementation while demonstrating how method selection can substantially affect economic
conclusions. Our empirical applications show that the same series can appear stationary under
one estimator yet strongly persistent under another, with disagreement patterns providing
diagnostic information about data characteristics such as contamination or convergence to
local minima.

In the future, a key challenge for theoretical research in this area is developing an estimator
that combines ELW’s efficiency and unrestricted parameter range with the robustness
properties of tapered methods. If possible, such a method would eliminate the difficult

trade-offs practitioners currently face.
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