PyELW: Exact Local Whittle Estimation for Long
Memory Time Series in Python

Jason R. Blevins
The Ohio State University
August 29, 2025

Abstract

Fractionally integrated time series, characterized by slowly decaying autocorrelations
and spectral densities exhibiting power-law behavior at low frequencies, require accurate
estimation of the memory parameter d to distinguish between stationary long memory
(0 < d < 0.5), nonstationary processes (0.5 < d < 1), and unit root behavior (d > 1).
This paper introduces PyELW, a Python package for local Whittle estimation of the mem-
ory parameter d including the foundational estimator of Robinson (1995), tapered variants
by Velasco (1999) and Hurvich and Chen (2000), the exact local Whittle estimator of Shi-
motsu and Phillips (2005), and the two-step estimator of Shimotsu (2010). While a pack-
age exists for Stata and implementations are available for R and MATLAB, these are either
limited-scope or no longer maintained and there was previously no Python implementation
of these methods. PyELW provides a wide array of local Whittle estimators in a single
package, featuring fast O(nlogn) fractional differencing, a consistent, object-oriented API
with theoretically motivated defaults, and extensive validation through exact replication
of previously-published results and rigorous cross-platform verification. We demonstrate
the package’s usage through simulations and applications to macroeconomic time series.

Keywords: time series, fractional integration, fractional differencing, long memory, local Whit-
tle estimation, Python.

1. Introduction

Long memory time series are characterized by slowly decaying autocorrelations and spectral
densities exhibiting power-law behavior at low frequencies. These processes, often modeled as
fractionally integrated processes, arise naturally in many fields including economics, finance,
and climate science. Accurate semiparametric estimation of the long memory parameter, with-
out relying on parametric distributional assumptions, is important for robust understanding
of the persistence properties of such series.

The presence of long memory has been documented extensively in empirical applications.
For example, daily realized volatilities of foreign exchange rates, computed from 5-minute
returns, exhibit fractional integration with d ~ 0.4, indicating persistent but stationary long-
memory dynamics (Andersen, Bollerslev, Diebold, and Labys 2001). Climate series such as
average annual temperatures display moderate long memory persistence with estimates of
d from 0.2 to 0.4, indicating stationary but highly persistent behavior that has important
implications for climate modeling and forecasting (Baillie and Chung 2002). Economic time

https://orcid.org/0009-0001-3325-6059

2 Local Whittle Estimation in Python

series such as inflation rates exhibit intermediate memory, with d estimates between 0.4
and 0.6, challenging the traditional 7(0)/I(1) dichotomy (Hassler and Wolters 1995). Local
Whittle estimation provides a robust semiparametric framework for distinguishing between
stationary long memory (0 < d < 0.5), nonstationary but mean-reverting processes (0.5 <
d < 1), and unit root or explosive behavior (d > 1) across applications such as these.

While the statistical theory for semiparametric estimation of the fractional integration pa-
rameter has advanced significantly over the past three decades, beginning with Geweke and
Porter-Hudak (1983) and Robinson (1995), practical implementation remains more limited
and varies across software platforms. The computational challenges are non-trivial but man-
ageable. Efficient fractional differencing algorithms with O(nlogn) complexity are available,
and while no closed-form solutions exist for d, the scalar nature of the optimization problem
makes reliable estimation feasible. However, the various tapered estimators involve special-
ized window functions, potentially complex-valued, and frequency subsampling techniques
that require careful implementation. Additionally, there are important subtleties regarding
the treatment of unknown means and trends.

1.1. Existing packages

Methods

Package Language LW V HC ELW 2ELW Notes

whittle Stata v v Proprietary, LW and ELW
only

elwcodel0 MATLAB v oV v v Shimotsu’s reference im-
plementation

LongMemoryTS R v v oV v v Removed from CRAN;
HC and 2ELW contained
eITors

PyELW Python v v v v v Comprehensive, packaged
implementation

Table 1: Software packages for local Whittle and related estimation methods. Note: LW
= local Whittle, V = Velasco, HC = Hurvich-Chen, ELW = exact local Whittle, 2ELW =
two-step exact local Whittle.

Table 1.1 reveals a limited software landscape with a critical gap in the Python ecosystem.
Stata’s whittle command, introduced by Baum, Hurn, and Lindsay (2020), provides reliable
implementations of LW and ELW, but requires proprietary software and does not implement
many other methods we consider. We also found that it is unable to estimate parameters for
unit root processes and beyond, d > 1, due to limitations in the built-in fractional differencing
routine. The MATLAB implementation of Shimotsu (2010) implements several methods, but
is aimed at academic users without formal packaging, and also requires proprietary software.!
The most comprehensive package, LongMemoryTS, was available for R but has been removed
from CRAN. Our analysis revealed implementation errors in its HC taper and two-step ELW

"However, we were able to use several of the functions in GNU Octave with little difficulty.

Jason R. Blevins 3

estimators, which we describe in Appendix A. Other related packages with a different focus
include the R packages longmemo and fracdiff as well as the Python package whittlehurst.
These packages include methods for classical parametric Whittle estimation of fGn and/or
ARFIMA models, but do not include semiparametric local Whittle methods which are our
focus.

PyELW addresses this implementation gap by providing a comprehensive, open-source Python
implementation with several key contributions. First, it implements all major local Whit-
tle variants—untapered, tapered variants (Velasco, Hurvich-Chen), exact local Whittle, and
two-step ELW—with algorithms verified against published empirical and Monte Carlo re-
sults. Second, it provides efficient O(nlogn) fractional differencing following Jensen and
Nielsen (2014), enabling fast preprocessing, nested fractional differentiation, and simulation of
ARFIMA processes. Third, the package offers a consistent object-oriented API with sensible
defaults for bandwidth selection, parameter bounds, and standard error calculation, making
it accessible to both practitioners and researchers. Fourth, PyELW includes comprehensive
documentation, unit tests, and replication scripts for key papers in the literature.

1.2. Organization of paper

The remainder of this paper is organized as follows. Section 2 provides a methodological
overview of semiparametric estimation for fractionally integrated processes, covering the evo-
lution from the basic local Whittle estimator through tapered variants to exact local Whittle
methods. Section 3 describes the PyELW package, including the API, implementation details,
and examples for each estimator. Section 4 details our comprehensive validation approach,
including replication of Monte Carlo and empirical results from the literature, comparison
with existing implementations across software platforms, and extensive unit testing with both
simulated and real data. Section 5 concludes.

2. Semiparametric estimation of fractional integration
Formally, consider the discrete-time fractionally integrated process:
(1-L)X; =u1{t >1}, t=0,41,+2,...

where L denotes the lag operator, dy € R represents the true fractional differencing parame-
ter, 1{-} is the indicator function (with X; = 0 for ¢ < 0 as the initial condition), and {u;} is a
stationary process with spectral density f,,(A) that captures short-run dynamics. The param-
eter dy governs the memory properties: dg = 0 yields standard stationary ARMA behavior,
dp € (0,0.5) produces stationary long memory, dy = 0.5 represents the boundary between
stationarity and nonstationarity, dy € (0.5, 1) generates nonstationary mean-reverting behav-
ior, and dy = 1 corresponds to the familiar unit root case. Negative values dy € (—0.5,0)
represent antipersistent or intermediate memory processes.

For observations {X;}j";, the discrete Fourier transform at frequencies \; = 2mj/n for j =
1,...,n —11is defined as:?

]. L)\ -t
wx (A;) = Xte_l E
0= =3
2Following Robinson (1995), we use the normalization factor (27n)~'/2 throughout.

4 Local Whittle Estimation in Python

The periodogram Ix(\;) = |wx();)|? provides a natural estimator of the spectral density
Sx(A5)-

The Whittle likelihood (Whittle 1951) approximates the Gaussian likelihood in the frequency
domain by exploiting the fact that the Fourier coefficients wx (\;) are asymptotically inde-
pendent complex Gaussian random variables with variance fx(\;). For a parametric model
with spectral density fx(\;;60) where 8§ = (d,1) consists of the memory parameter d and
nuisance parameters ¥ governing short-run dynamics, the Whittle log-likelihood is:

L (9)——%%J log fx (A3 0) + 59
AW - Pt g JX YE fX()\j;g)

This frequency-domain approach reduces computational complexity from O(n?) for time-
domain maximum likelihood to O(nlogn), while maintaining consistency and asymptotic
efficiency under regularity conditions. However, it requires fully specifying the parametric
form of the spectral density. The semiparametric approaches implemented in PyELW ex-
ploit the special spectral structure of fractionally integrated processes to estimate d without
requiring a full parametric model.

2.1. The local Whittle estimator

A fundamental insight of Granger and Joyeux (1980) and Hosking (1981) is that fractionally
integrated processes have a distinctive spectral shape at low frequencies. Specifically, the
spectral density of X, satisfies

fx(N) ~GA720 a5 A =0t (1)

where G = f,(0) > 0, meaning that u; is not overdifferenced. This power law behavior
characterizes the long memory property: the spectral density diverges as A™2% for dy > 0,
capturing the slow decay of autocorrelations.

The challenge in using this relationship to estimate dp is that the power law behavior in
(1) only holds at frequencies near zero. At higher frequencies, the spectrum is dominated
by short-run dynamics that we wish to avoid specifying parametrically. Robinson (1995)
developed the local Whittle (LW) estimator by restricting attention to only the first m =
m(n) < n Fourier frequencies where (1) holds most accurately. Substituting the approxima-

tion fx(\;) = G)\j_Qd into the Whittle likelihood and maximizing with respect to G yields
G(d) = 1 >)\gdl x(Aj). Substituting this back gives the concentrated local Whittle ob-
jective function:

1 & 2d
R(d) = log (m§ :)\?dIX()\j)) -) “logA;.
j=1 j=1

The objective function R(d) is convex in d (Baum et al. 2020), ensuring that any local min-
imum is a global minimum, making optimization straightforward and reliable. Furthermore,
the periodogram is independent of d and can be pre-computed, meaning that the objective
function requires only O(m) operations per evaluation.

The local Whittle estimator is defined as:

diw = in R(d
L =arg min, (d)

Jason R. Blevins

where [A7, Ag] denotes the admissible parameter space. Robinson (1995) established reg-
ularity conditions such that for dy € (—0.5,0.5), the local Whittle estimator is consistent,
converges at the optimal /m rate, and achieves the semiparametric efficiency bound:

Vm(dpw — do) & N(0,1/4)

The bandwidth parameter m controls the bias-variance tradeoff: larger m reduces variance but
increases bias as higher frequencies contaminated by short-run dynamics enter the estimation.
The result above requires m — oo and m/n — 0 as n — oo to balance these concerns. Typical
choices follow m = [n®| with a € (0.6,0.8). See Henry and Robinson (1996) for details on
optimal bandwidth selection. Following the Stata implementation, PyELW uses m = [n%6°|
as the default bandwidth, but allows the user to customize this.

2.2. Tapered local Whittle estimators

Although the LW estimator is efficient for dy € (—0.5,0.5), this range excludes important
processes beyond the nonstationary boundary. Subsequent developments following Robinson
(1995) aimed to relax this limitation while preserving the desirable asymptotic properties. Ta-
pering offers a solution: by down-weighting observations near the sample boundaries through
multiplication by a smooth function that decays to zero at the edges, we can reduce the
spectral distortion that occurs from polynomial time trends. Formally, tapering involves scal-
ing the original series X; by a weight sequence h; that is symmetric around |n/2], satisfies
max h; = 1, and decays smoothly to zero at the sample boundaries. The tapered periodogram
I(\;) = Jwi(Aj)]? where wy,(\;) = (2mn) /2 1, by X;e ™™t then replaces the standard pe-
riodogram in the objective function. That is, the tapered local Whittle estimator minimizes:

1 & 2d -
Ry (d) = log (m >)\?dlh()\j)) - > log A;.
j=1 Jj=1

Velasco (1999) demonstrated that tapering extends consistency to dp € (—0.5,1) and asymp-
totic normality to dyp < 0.75, though at the cost of increased variance (at least 2.1 times
the LW variance). Using tapers of higher orders p can extend the feasible range of dy val-
ues and provide robustness to trends of order p — 1. Velasco (1999) discusses the triangular
Bartlett window taper (p = 2), which is valid for dy € (—0.5,2.5) and robust to linear trends,
as well as the cosine bell and Zhurbenko-Kolmogorov tapers (p = 3), which are valid for
dp € (—0.5,3.5) and robust to linear and quadratic time trends. For Velasco tapers, the pe-
riodogram is subsampled at frequencies \j, = 2wjp/n for j = 1,...,m, where p is the taper
order.

Hurvich and Chen (2000) developed a tapered local Whittle estimator that achieves asymp-
totic variance of only 1.5/4m for dy € (—0.5,1.5). The Hurvich-Chen (HC) approach applies
a complex-valued taper to first-differenced data AX; = X; — X;_1, then adds back one degree
of integration in the estimation. This differencing step ensures validity for dy up to 1.5, while
the shifted frequencies A\; = 27 (j +0.5)/n avoid the singularity at zero frequency that would
otherwise cause numerical problems for the overdifferenced series when dy < 1.

2.3. The exact local Whittle estimator

6 Local Whittle Estimation in Python

The exact local Whittle (ELW) estimator of Shimotsu and Phillips (2005) addresses a fun-
damental limitation of the LW estimator. The LW approach relies on the approximation
Ix(\;) = G)\JTQdOIu()\j), which is only valid for stationary processes (dy < 0.5). The ELW
estimator addresses this by working directly with the fractionally differenced series. Since
(1 — L)% X, = wy, it follows that (1 — L)?X; = (1 — L)% %, and for d = doy, we recover
uy exactly. By computing AYX; for each value of d and using its periodogram Ia x(Aj), we
work with the exact relationship.

The fractional differencing operator is defined through the generalized binomial expansion:
AXy =(1-L)'X, = Z o (d) X

where the coefficients can be computed recursively via my(d) = 1 and

k—1—d
mr(d) = mp—1(d) - — for k > 1.
For positive d, this operation “differences” the series by a fractional amount, while for negative

d, it performs fractional “summation” or integration.

The ELW objective function has the same functional form as that of LW, but uses the peri-
odogram of the fractionally differenced series:

2d -
Reuw(d) log(E Tnax (A) - > log)
i=1

where Inax();) denotes the periodogram of A?X;. The ELW estimator is then:

dppw = arg de&lfl L Repw(d)
where [A1, Ag] denotes any interval of length at most 9/2. Therefore, the advantage of
the ELW estimator is that we can consistently estimate dy whether it lies in the stationary
region, the nonstationary region, or even exactly at the boundary dy = 0.5, provided that the
optimization interval contains the true value. Furthermore, the ELW estimator retains the
efficient limiting distribution of the LW estimator despite this expanded range:

Vm(deiw — do) % N(0,1/4).

The computational cost of ELW is higher than for the LW estimator, which only required
one precomputed periodogram calculation and no fractional differencing operations. For
the ELW estimator, for each candidate value of d during optimization we must recompute
the fractional difference A?X; and the periodogram Inay. While computing A?X; naively
requires O(n?) operations, PYELW implements the fast fractional differencing algorithm of
Jensen and Nielsen (2014) which reduces this to O(nlogn) using the fast Fourier transform.
For this additional computational cost, the benefit is consistent estimation for both stationary
and nonstationary processes with the same optimal asymptotic variance.

Although Shimotsu and Phillips (2005) assumed the mean of the process was known and equal
to zero, Shimotsu (2010) considered the behavior of the ELW estimator with two estimators

Jason R. Blevins

for an unknown mean. When using the sample mean i = X, Shimotsu (2010) demonstrates
consistency for dy € (—1/2,1) and asymptotic normality for dy € (—1/2,3/4). In contrast,
when using the initial observation i = X1, both consistency and asymptotic normality hold
for dy > 0, providing broader coverage in the nonstationary region but requiring positive
memory parameters.

2.4. Two-step exact local Whittle estimator

The previous estimators assume that the stochastic process {X;} has zero mean and does not
contain a trend. However, real economic time series typically have unknown means or trends
that can bias fractional integration estimates. Shimotsu (2010) developed the two-step exact
local Whittle (2ELW) estimator to address these issues while preserving the optimal N(0,1/4)
limiting distribution.

Consider the model with unknown mean:
X =po+ X2, XD =(1-L)u1{t>1}

where g is an unknown constant. The problem is subtle, because the best way to handle the
unknown mean depends on the unknown value of dj itself. For stationary processes (dy < 0.5),
the sample average X provides the best mean estimate, but for highly persistent processes
(dp > 0.75) the first observation X is better, as the sample mean becomes biased. To address
this, Shimotsu (2010) proposed an adaptive mean estimation step inside the objective function
that varies smoothly with the value of d:

fi(d) = w(d)X + (1 — w(d)) X,
where w(d) is the weight function:

if d < 0.5,
[1+ cos(4md)] if 0.5 < d < 0.75,
if d > 0.75.

w(d) =

O = =

This creates a modified ELW objective function that estimates the mean jointly with dy:
1 & 2d &
Rp(d) =1og | — Y Inaix—aay(A) | — = D _log A
m = m

Estimation of the mean in this way rendered direct asymptotic theory difficult, so Shimotsu
(2010) instead proposed a two-step approach based on a /m-consistent first-step estimator—
one of the tapered local Whittle estimators discussed above—to obtain an initial estimate
dp. This estimate need not be efficient, only consistent. The second step applies a single
Newton-Raphson step to the modified ELW objective function starting from czT:

R . RL(dr)
doprw = dp — —L1-—~
RY.(dr)

where R, and R, denote the first and second derivatives of Rr. While one Newton-Raphson
step is sufficient for the asymptotic theory, practitioners often iterate until convergence. This

8 Local Whittle Estimation in Python

procedure achieves the optimal N(0, 1/4) limiting distribution for dy € (—1/2,2), dramatically
expanding the feasible range while maintaining efficiency and robustness to the unknown
mean.

In practice, the Hessian R’{;(JT) can become very small or negative in finite samples, leading
to unstable Newton-Raphson updates, as documented by Shimotsu (2010) and Baum et al.
(2020). For robustness, PyELW instead uses golden section search to minimize Rp(d) within
a 99% confidence interval around the first-step tapered LW estimate, which avoids numerical
instabilities while preserving the asymptotic properties.

For data containing polynomial trends of order p, the procedure first removes the trend via
OLS regression on (1,¢,t2,...,tP), then applies the two-step estimator to the residuals. This
detrending preserves consistency but restricts the feasible range to dyp € (—0.5,2 — p/2),
yielding dy € (—0.5,1.5) for linear detrending.

2.5. Computational considerations

With the landscape of local Whittle estimators established, practical implementation requires
decisions about computational matters that can impact accuracy and performance. In terms
of the local Whittle estimators we consider, these relate to choices about fractional differenc-
ing, optimization of scalar objective functions, and parameter search boundaries.

The fractional differencing operation A?X; = (1 — L)?X; involves an infinite binomial expan-
sion that must be truncated in practice. The naive approach using direct binomial coefficients
has O(n?) complexity, so we use the fast fractional differencing algorithm developed by Jensen
and Nielsen (2014), which is an O(nlogn) method based on FFT convolution.

For minimizing the various local Whittle objective functions introduced above, PyELW uses
golden section search for univariate optimization. This provides guaranteed convergence with-
out requiring derivatives. For each estimator, we provide default search bounds that balance
empirical relevance and theory, but we allow the user to override the defaults.

3. Package description and examples

The PyELW package provides a comprehensive and efficient implementation of local Whit-
tle and exact local Whittle estimation methods for fractionally integrated time series. The
package leverages NumPy for efficient, vectorized array operations. The package is available
under the BSD licence and can be obtained at https://github.com/jrblevin/pyelw. To
install PyELW:

pip install pyelw

This section first discusses each of the three main estimator classes, provides an overview
of their initialization and usage in estimation, introduces two auxiliary functions for frac-
tional differencing and ARFIMA simulation, and then proceeds through three detailed usage
examples.

3.1. Main estimator classes

PyELW provides three main estimator classes that implement different local Whittle estimator
variants: LW, ELW, and TwoStepELW. These classes, summarized in Table 2, have a consistent

https://github.com/jrblevin/pyelw

Jason R. Blevins

Class Method Citations
LW Local Whittle Untapered: Robinson (1995)
Tapered: Velasco (1999), Hurvich and Chen (2000)
ELW Exact local Whittle Shimotsu and Phillips (2005)
TwoStepELW Two-step ELW Shimotsu (2010)

Table 2: Main estimator classes in PyELW

API: the main estimate method accepts as inputs the time series data X and, optionally the
bandwidth m and parameter bounds. It returns a result dictionary containing the parameter
estimate, standard error, diagnostic information, and any method-specific return values.

The time series should be provided as a NumPy ndarray. Only the data X is required. The
default bandwidth is m = int(a**0.65) and the default bounds are chosen to cover most
common processes encountered without being overly wide.

Arguments of the estimate method:

o X: Input time series data as numpy.ndarray
« m: Number of frequencies to use (default: |n|%6%)

e bounds: Tuple (dpmin, dmag) for optimization bounds (default: (—1.0,2.2))
Return value of the estimate method: a dict with keys

’d_hat’: Estimate of memory parameter d

e ’se’: Standard error based on Fisher information

e ’ase’: Standard error based on asymptotic theory

e ’objective’: Final objective function value

e ’method’: String identifier for estimation method used
e ’nfev’: Number of objective function evaluations

e ’n’: Number of time series observations

e ’m’: Number of frequencies used

¢ Additional method-specific keys as described below.

LW Class

The ‘LW class implements untapered and tapered local Whittle estimation. The class can
be initialized with a default taper type (which is none’ by default). The estimate method
accepts the following method-specific parameters (in addition to the common X, m, and bounds
arguments):

10 Local Whittle Estimation in Python

e taper: Taper type from one of the following options:

— ’none’ (default): The standard (untapered) local Whittle estimator of (Robinson
1995) for stationary and invertible processes with dy € (—0.5,0.5).

— ’kolmogorov’: The Zhurbenko-Kolmogorov taper introduced in Velasco (1999)
with order p = 3. The weights can be constructed by solving the generating equa-
tion stated on page 97 of Velasco (1999). PyELW implements the taper following
the simple convolution used in Shimotsu’s MATLAB implementation.

— ’cosine’: The cosine bell taper discussed in Velasco (1999) with p = 3 and weights

hy = 1 [1—cos (27#)] .
2 n

— ’bartlett’: The triangular Bartlett window taper from Velasco (1999) with p = 2.
The taper weights are
t—[n/2
PRI et 71|

[n/2]

— ’he?’: The complex-valued taper of Hurvich and Chen (2000). This approach
differences the data before estimation a number of times specified by the diff
argument, applies the taper for estimation, then adds back diff after estimation to
determine d As described in Hurvich and Chen (2000), the estimator uses modified
frequencies \; = 2m(j 4 0.5)/n to reduce bias.

coy M.

o diff: Number of times the series is differenced before estimation (for HC taper only,
default: 1)

The return value of estimate is a dictionary with the following keys (in addition to the
common return values mentioned above):

o ’taper’: Which taper was used (’none’ for standard LW)

o ’diff’: Number of differencing operations performed (for HC taper only)

For the Velasco tapers, the implementation follows the original paper, including the peri-
odogram subsampling factor p and the variance inflation factor ® for each corresponding
value of p.

ELW Class

The ELW class implements the exact local Whittle estimator of Shimotsu and Phillips (2005).
This estimator extends the range of consistency to all values of the true parameter dy, provided
that the optimization interval has length less than 9/2, by using fractional differencing to
transform the data. This approach eliminates the need for tapering while extending the valid
parameter range, however, it does not handle processes with unknown mean or trends. The
estimate method accepts one additional optional argument to control whether the data are
demeaned and if so, which estimator for the mean to use:

e mean_est: Type of demeaning, if any, before estimation.

Jason R. Blevins

— ’none’ (default): Process the time series as is, without demeaning.

— ’mean’ Process the time series after subtracting the sample mean from each ob-
servation.

— ’init’ Process the time series after subtracting the initial value from each obser-
vation.

The dictionary returned does not include any additional keys beyond the standard ones
described above.

TwoStepELW Class

The TwoStepELW class implements the two-step estimator of Shimotsu (2010), which extends
the ELW methodology to handle time series with potentially unknown mean and polynomial
trends of known order. The estimator uses a two-step procedure: first applying a tapered lo-
cal Whittle estimator, then using this initial estimate to construct an adaptive mean-adjusted
ELW estimator. The estimate method for this class accepts the following additional argu-
ments:

o taper: Step 1 taper type (default: *hc?)

o detrend_order: Polynomial detrending order (default: 0 for demeaning only)

The result dictionary returned includes the following additional method-specific keys:

>taper’: Step 1 taper used

e ’detrend_order’: Polynomial detrending order

e ’d_stepl’: Estimated first-step d via tapered LW

e ’nfev_stepl’: Number of objective function evaluations in step 1

e ’objective_stepl’: Final objective function value in step 1

3.2. Basic initialization and estimation

Here we provide a simple overview of the available estimators. First, with the LW class, there
are five tapering options:

from pyelw import LW
import numpy as np

x = np.random.randn(500) # Sample data

1w = LW() # Standard LW (Robinson, 1995)
result = lw.estimate(x) # Defaults

result = lw.estimate(x, m=42) # Number of frequencies
result = lw.estimate(x, bounds=(-1.0, 3.0)) # Parameter bounds

11

12 Local Whittle Estimation in Python

In addition to the standard (untapered) LW estimator, there are four tapering options:

lw_kol = LW(taper='kolmogorov') # Kolmogorov taper (Velasco, 1999)

lw_cos = LW(taper='cosine') # Cosine bell taper (Velasco, 1999)
lw_bart = LW(taper='bartlett') # Triangular Bartlett taper (Velasco, 1999)
lw_hc = LW(taper='hc') # Complex taper (Hurvich and Chen, 2000)

You can also override the taper on a per-call basis:

lw = LW(taper='hc') # LW instance with HC taper
result = lw.estimate(x) # Use the HC taper
result = lw.estimate(x, taper='none') # Override taper for this call

Second, with the ELW and TwoStepELW classes, no initialization is required, but various esti-
mation parameters are available:

ELW instance and estimation

elw = ELW()

result = elw.estimate(x) Defaults

result = elw.estimate(x, m=42) Number of frequencies
result elw.estimate(x, bounds=(-1.0, 3.0)) # Parameter bounds

**

*

TwoStepELW instance and estimation

elw2 = TwoStepELW()

result = elw2.estimate(x)

result = elw2.estimate(x, m=42)

result = elw2.estimate(x, bounds=(-1.0, 3.0))
result = elw2.estimate(x, taper='kolmogorov')
result = elw2.estimate(x, detrend_order=1)

Defaults

Number of frequencies
Parameter bounds
First step taper

H oW OB R

Remove linear trend

3.3. Auxiliary functions

In addition to the main estimator classes, PyELW provides several auxiliary functions for
working with fractionally integrated time series. The fracdiff function implements the fast
O(nlogn) algorithm of Jensen and Nielsen (2014) for applying the fractional differencing
operator (1 — L)¢ to a time series.

>>> from pyelw.fracdiff import fracdiff
>>>x =11, 1, 1, 1]
>>> fracdiff(x, d=0.4)

array([1. , 0.6 , 0.48 , 0.416])

The arfima function generates realizations of ARFIMA(0,d,0) and ARFIMA(1,d,0) pro-
cesses using a two-step algorithm: first generating an AR(1) process with given autocorre-
lation parameter ¢ and then applying the fractional filter (1 — L){ — d) via the fracdiff
function.

Jason R. Blevins 13

>>> from pyelw.simulate import arfima

>>>n = 10

>>> x = arfima(n, d=0.4, sigma=1.0, phi=0.1, seed=42)
>>> print(x)

[-0.46575231 -0.37114045 0.42485813 1.68154856 0.60491577 0.19986061
1.81105932 1.77565976 0.6346111 1.14893899]

3.4. Examples

Example 1: Simulated ARFIMA data

In this first example, we simulate 500 observations from an ARFIMA(0,d,0) model with
true parameter dg = 0.4 and use the simulated data to estimate dy via ELW. We obtain a
reasonably close estimate d = 0.3786 with estimation error |d — dg| = 0.0214.

>>> from pyelw import ELW

>>> from pyelw.simulate import arfima
>>>

>>> # Simulation parameters

>>> d_true = 0.4 # True memory parameter
>>> n = 500 # Sample size
>>> m = int(n**0.65) # Number of frequencies

>>>

>>> # Simulate ARFIMA(0,d,0) process

>>> print(f"Simulating ARFIMA(O,{d_true},0) with n={n} observations...")
>>> x = arfima(n, d_true, sigma=1.0, seed=42)

>>>

>>> # Estimate the memory parameter via ELW

>>> elw = ELW()

>>> result = elw.estimate(x, m=m)

>>>

>>> # Display results

>>> print (f"True d: {d_true}")

>>> print(f"Estimated d: {result['d_hat']:.4f}")

>>> print(f"Standard error: A{result['se']:.4f}")
>>> print (f"Estimation error: {abs(result['d_hat'] - d_true):.4f}")

Simulating ARFIMA(0,0.4,0) with n=500 observations...
True d: 0.4

Estimated d: 0.3786

Standard error: 0.0784

Estimation error: 0.0214

Example 2: Nile River Level Data

The following example uses Pandas to load a CSV dataset containing yearly observations on

14 Local Whittle Estimation in Python

the minimum level of the Nile river and estimates d via LW and ELW. The nile.csv dataset
is available in the PyELW repository.

>>> import pandas as pd

>>> from pyelw import LW, ELW

>>>

>>> # Load time series from 'nile' column of data/nile.csv

>>> df = pd.read_csv('data/nile.csv')

>>> nile = pd.to_numeric(df['nile']).values

>>> print(f"Loaded {len(nile)} observations from nile.csv")

>>>

>>> # Estimate d using local Whittle estimator

>>> 1w = LW()

>>> result = lw.estimate(nile)

>>> print (f"LW estimate: {result['d_hat']:8.3f} ({result['se']:.3f})")
>>>

>>> # Estimate d using exact local Whittle estimator

>>> elw = ELW()

>>> result = elw.estimate(nile)

>>> print (f"ELW estimate: {result['d_hat']:8.3f} ({result['se']:.3f})")

Loaded 663 observations from nile.csv
LW estimate: 0.409 (0.062)
ELW estimate: 0.886 (0.066)

Example 3: U.S. real GDP data from FRED

To illustrate the real-world usage of PyELW, below is a complete example in which we analyze
U.S. real GDP data obtained from U.S. Federal Reserve Economic Data (FRED) service to
estimate the memory parameter d using the two-step ELW estimator. The estimate d = 1.0096
suggests that the logarithm of real GDP exhibits unit root behavior.

>>> import numpy as np

>>> import pandas_datareader as pdr

>>> from pyelw import TwoStepELW

>>>

>>> # Download real GDP from FRED into a Pandas dataframe

>>> df = pdr.get_data_fred('GDPC1', start='1950-01-01', end='2024-12-31"')
>>> gdp = df.values.flatten()

>>> n = len(gdp) # Number of observations

>>> log gdp = np.log(gdp) # Natural logarithm

>>> print (f"Downloaded {n} observations for U.S. real GDP")
>>>

>>> # Two-Step ELW estimation with linear detrending

>>> estimator = TwoStepELW()

>>> m = int(n**0.65) # Choose bandwidth/number of frequencies

Jason R. Blevins

>>> result = estimator.estimate(log_gdp, m=m, detrend_order=1)
>>> ci_lower = result['d_hat'] - 1.96 * result['se']

>>> ci_upper = result['d_hat'] + 1.96 * result['se']

>>>

>>> # Display results

>>> print ("\nTwo-Step ELW Results:")

>>> print (f"Sample size: {n}")

>>> print (f"Number of frequencies: {m}")

>>> print(f"Estimated d: {result['d_hat']:.4f}")

>>> print(f"Standard error: {result['se']:.4f}")

>>> print (£"957 CI: [{ci_lower:.4f}, {ci_upper:.4f}]")

Downloaded 300 observations for U.S. real GDP

Two-Step ELW Results:

Sample size: 300

Number of frequencies: 40

Estimated d: 1.0096

Standard error: 0.0791

95% CI: [0.8547, 1.1646]

4. Validation and replication

We validate PyELW’s implementations through comprehensive testing that includes replicat-
ing Monte Carlo experiments and empirical results from the literature, implementing cross-
platform comparisons with existing R, Stata, and MATLAB implementations surveyed in Ta-
ble 1.1, and maintaining an extensive pytest unit test suite with over 2,400 parametrized
test cases. Table 3 provides an overview of the various replications and tests implemented,
grouped by estimator.

The source code for each empirical and Monte Carlo replication is included in the examples
directory of the PyELW repository, exhibiting close agreement with original published results.
Agreement with certain empirical results from Baum et al. (2020) is also enforced in the unit
tests in the tests directory alongside simulation and cross-platform validation tests to ensure
accuracy and robustness.

Stmulation-based tests

The simulation-based test suite validates the estimators using ARFIMA processes with known
memory parameters across estimator-specific parameter ranges (as detailed in Table 3), with
sample sizes ranging from n = 500 to n = 20,000. The test framework verifies important
theoretical properties: consistency at rate O(m_l/ 2) for stationary processes, proper standard
error scaling according to y/ma/m; for bandwidth sequences m; < mg, and edge case handling
across parameter boundaries including near-unit root processes, antipersistent series with
negative d values, and highly nonstationary cases.

16 Local Whittle Estimation in Python

Estimator

Implementation Details

Local Whittle (LW)
Simulation tests
Empirical replications

Monte Carlo replications
Cross-platform validation

Robinson (1995)

ARFIMA(0, d, 0) for d € [~0.3,0.4]
Shimotsu (2010) Table 8

Baum et al. (2020)

Shimotsu and Phillips (2005) Table 1
Stata whittle, R LongMemoryTS

Tapered LW (Velasco)
Simulation tests
Monte Carlo replications
Cross-platform validation

Velasco (1999)

ARFIMA (0, d, 0) for d € [~0.4, 2.0]
Shimotsu and Phillips (2005) Table 2
MATLAB/Octave veltaper.m

Tapered LW (HC)
Simulation tests
Empirical replications
Monte Carlo replications

Cross-platform validation

Hurvich and Chen (2000)
ARFIMA(0, d, 0) for d € [—0.4,2.0]
Hurvich and Chen (2000) Table III
Hurvich and Chen (2000) Table I
Shimotsu and Phillips (2005) Table 2
R LongMemoryTS (corrected version)

Exact LW (ELW)
Simulation tests
FEmpirical replications
Monte Carlo replications
Cross-platform validation

Shimotsu and Phillips (2005)
ARFIMA(0,d,0) for d € [-2.5,4.0]
Baum et al. (2020)

Shimotsu and Phillips (2005) Table 1
Stata whittle, R LongMemoryTS

Two-Step ELW (2ELW)
Simulation tests
FEmpirical replications
Monte Carlo replications
Cross-platform validation

Shimotsu (2010)

ARFIMA(0,d, 0) for d € [~2.5,3.0]
Shimotsu (2010) Table 8
Shimotsu (2010) Table 2

R LongMemoryTS

Table 3: Summary of replications and tests performed by estimator.

Notes: Replication

scripts are provided in the examples directory of the PyELW repository. Simulation tests
and cross-platform validations are performed in the included pytest unit tests. in the tests

directory.

Jason R. Blevins

Empirical validation tests

The empirical validation tests in the suite employ two well-known time series datasets used
in Baum et al. (2020) to ensure estimator accuracy:

1. nile.csv: Annual minimum water levels of the Nile river (622-1284 CE, n = 663).

2. sealevel.csv: Monthly global sea level measurements (1880-1985, n = 1,272).

For each dataset, the test suite validates estimates across multiple bandwidth selections (m =
n® for various values of) and compares results against the published results of Baum et al.
(2020) using Stata’s whittle package.

Cross-platform validation tests

Perhaps the most comprehensive validation in the PyELW test suite involves systematic
comparison against implementations in multiple statistical computing platforms to verify
numerical agreement and reproducibility of point estimates and standard errors.

¢ R LongMemoryTS: We validate against the local.W function for standard and tapered
LW estimation, the ELW function for ELW estimation, and the ELW2S function for two-
step ELW estimation with polynomial detrending.

o Stata whittle: The test suite compares results with Baum et al. (2020)’s implementation
for both the standard LW and ELW estimators using the nile.csv and sealevel.csv
datasets.

e MATLAB elwcodel0: We validate tapered estimation against Shimotsu’s veltaper.m
implementation of the Velasco (1999) Zhurbenko-Kolmogorov taper with p = 3 polyno-
mial order, ensuring numerical equivalence for this specialized estimation approach.

Each test employs JSON-serialized reference results for automated regression testing, with
tolerance thresholds reflecting comparison characteristics. Cross-platform comparisons ac-
commodate numerical and implementation differences with point estimates agreeing within
1079 to 1072 absolute tolerance and standard errors within 1078 to 1072 absolute toler-
ance. Specific tolerance values for individual test cases can be found in the test suite files
tests/test_lw.py, tests/test_elw.py, and tests/test_twostep.py.

Other Tests

Beyond the core validation tests, the unit test suite also includes tests for the included aux-
iliary methods.

In the test_fracdiff.py module, our implementation of the Jensen and Nielsen (2014) fast
fractional differencing algorithm undergoes verification against known coefficient recursions,
comparison with R’s LongMemoryTS implementation, cross-validation with a reference based
on direct convolution, and inversion property testing across various parameter ranges and
edge cases, including boundary conditions for integer differencing (d € Z) and unit impulse
coefficient validation.

17

18 Local Whittle Estimation in Python

The test_simulate.py module contains comprehensive tests of the ARFIMA simulation
function, validating theoretical properties including variance scaling with o2, spectral density
behavior with slopes —2d at zero frequency, autocorrelation structure for both stationary
(d < 0.5) and nonstationary (d > 0.5) processes, variance growth properties for unit root
and explosive cases, AR(1) initialization correctness, asymptotic autocorrelation decay pat-
terns, stationarity boundary conditions, and antipersistence properties for negative memory
parameters. The tests cover extreme parameter values (d € [—0.49,2.0]) and verify boundary
conditions such as white noise recovery when d = 0.

In the test_optimization.py module, the golden section search optimization routine is
tested for convergence on various function types including quadratic, quartic, absolute value,
and exponential functions, with validation of custom tolerances, iteration limits, boundary
conditions, and Local Whittle-like objective functions.

5. Summary

PyELW provides a comprehensive and thoroughly validated implementation of local Whittle
and exact local Whittle estimation methods for long memory time series analysis in Python.
The package implements the original local Whittle estimator of Robinson (1995), the tapered
variants of Velasco (1999) and Hurvich and Chen (2000), and the exact local Whittle methods
of Shimotsu and Phillips (2005) and Shimotsu (2010). Validation includes accurate replica-
tions of major published results, cross-platform verification against R, Stata, and MATLAB
implementations, and comprehensive Monte Carlo testing across a wide range of memory
parameter values. The object-oriented design promotes extensibility while providing a con-
sistent interface, and the package includes several practical examples with real data as well
as a comprehensive pytest test suite.

Computational details

The results in this paper were obtained using Python 3.13 with NumPy 2.3.2. The PyELW
package is available from the Python Package Index (PyPI) at https://pypi.org/ and the
source code is hosted on GitHub at https://github.com/jrblevin/pyelw.

The estimators involve optimization of scalar objective functions. We could use minimize_scalar
from scipy.optimize, however, to keep dependencies to a minimum (primarily NumPy), we
implemented a golden section search method internally.

To create test cases for the LW, tapered LW, ELW and two-step ELW estimators, we used an
archived version of the LongMemoryTS package (version 0.1.0) for R (version 4.5.1) as well
as the whittle package (version 1.0.4) for Stata (version 16.1).

Acknowledgments

The author is grateful to the developers of the original implementations that served as bench-
marks for this work, particularly Katsumi Shimotsu for sharing the MATLAB implementations
of several estimators, Christian Leschinski, Michelle Voges, and Kai Wenger, the authors of
the R LongMemoryTS package, and Christopher Baum, Stan Hurn, and Kenneth Lindsay,

https://pypi.org/
https://github.com/jrblevin/pyelw

Jason R. Blevins

authors of the Stata whittle package.

References

Andersen TG, Bollerslev T, Diebold FX, Labys P (2001). “The Distribution of Realized
Exchange Rate Volatility.” Journal of the American Statistical Association, 96(453), 42—
55.

Baillie RT, Chung SK (2002). “Modeling and forecasting from trend-stationary long memory
models with applications to climatology.” International Journal of Forecasting, 18(2), 215—
226.

Baum CF, Hurn S, Lindsay K (2020). “Local Whittle estimation of the long-memory param-
eter.” Stata Journal, 20(3), 565-583.

Geweke J, Porter-Hudak S (1983). “The Estimation and Application of Long Memory Time
Series Models.” Journal of Time Series Analysis, 4(4), 221-238.

Granger CW, Joyeux R (1980). “An Introduction to Long-Memory Time Series Models and
Fractional Differencing.” Journal of Time Series Analysis, 1(1), 15-29. doi:10.1111/j.
1467-9892.1980.tb00297 . x.

Hassler U, Wolters J (1995). “Long Memory in Inflation Rates: International Evidence.”
Journal of Business & Economic Statistics, 13(1), 37-45.

Henry M, Robinson PM (1996). “Bandwidth Choice in Gaussian Semiparametric Estimation
of Long Range Dependence.” In Athens Conference on Applied Probability and Time Series,
volume 115 of Lecture Notes in Statistics, pp. 220-232. Springer, New York.

Hosking JRM (1981). “Fractional Differencing.” Biometrika, 68(1), 165-176.

Hurvich CM, Chen WW (2000). “An Efficient Taper for Potentially Overdifferenced Long-
Memory Time Series.” Journal of Time Series Analysis, 21(2), 155-180. doi:10.1111/
1467-9892.00179.

Jensen AN, Nielsen MO (2014). “A Fast Fractional Difference Algorithm.” Journal of Time
Series Analysis, 35(5), 428-436. doi:10.1111/jtsa.12074.

Robinson PM (1995). “Gaussian Semiparametric Estimation of Long Range Dependence.”
Annals of Statistics, 23(5), 1630-1661.

Shimotsu K (2010). “Exact Local Whittle Estimation of Fractional Integration with Unknown
Mean and Time Trend.” Econometric Theory, 26(2), 501-540.

Shimotsu K, Phillips PCB (2005). “Exact local Whittle estimation of fractional integration.”
Annals of Statistics, 33, 1890-1933.

Velasco C (1999). “Gaussian Semiparametric Estimation for Non-Stationary Time Series.”
Journal of Time Series Analysis, 20(1), 87-126.

Whittle P (1951). Hypothesis Testing in Time Series Analysis. Uppsala: Almqvist & Wiksells.

https://doi.org/10.1111/j.1467-9892.1980.tb00297.x
https://doi.org/10.1111/j.1467-9892.1980.tb00297.x
https://doi.org/10.1111/1467-9892.00179
https://doi.org/10.1111/1467-9892.00179
https://doi.org/10.1111/jtsa.12074

20 Local Whittle Estimation in Python

A. Corrections to R LongMemoryTS package

During cross-platform validation against the LongMemoryTS package for R, we identified
several implementation errors in the original code that prevented replication of published
results. These errors affected both the Hurvich and Chen (2000) tapered LW estimator and
the two-step ELW estimator of Shimotsu (2010). Because the LongMemoryTS package has
been removed from CRAN and is no longer in active development, we are unable to have our
changes incorporated into the package. Instead, we document these findings here and provide
corrected implementations of the specific affected functions in the PyELW repository.

First, the original LongMemoryTS implementation contained three errors in the HC complex
taper specification:

1. The complex-valued taper function was incorrectly implemented using cos instead of
the exponential function specified in Hurvich and Chen (2000):

Original
cos_bell_cmplx <- function(u) { 1/2 * (1 - cos(1i * 2 * pi * u)) }

Corrected
cos_bell_cmplx <- function(u) { 1/2 * (1 - exp(1li * 2 * pi * u)) }

2. The original implementation used the standard periodogram for all tapers, but Hurvich
and Chen (2000) used a specialized tapered periodogram. We added the missing hc_per
function:

hc_per <- function(data, m) {
T <- length(data)
norm_factor <- sqrt(2 * pi * T) * sqrt(2)
lambda <- 2 * pi * seq_len(m) Jo} seq_len(T) / T
W <- rowSums(exp(1i * lambda) * rep(data, each = m)) / norm_factor
return(abs (W) ~2)
}

3. The taper was applied incorrectly and the differencing parameter was hard-coded rather
than using the actual value:

Original

ht <- cos_bell_cmplx((1:T)/T)

peri <- per(data)[-1]

d.hat <- optimize(...)$minimum + 1 # Always adds 1

Corrected

ht <- cos_bell_cmplx((1:T-0.5)/T) # Proper t-0.5 shift

peri <- hc_per(data, m) # Use HC periodogram

d.hat <- optimize(...)$minimum + diff_param # Use actual parameter

Second, the two-step estimator implementation contained fundamental errors in the weight
function and data handling:

Jason R. Blevins 21

1. The adaptive weight function wd.elw did not implement the piecewise specification from
Shimotsu (2010):

Original
wd.elw <- function(d) { 1/2 * (1 + cos(4 * pi * d)) }

Corrected
wd.elw <- function(d) {
if(d <= 0.5) {
return(1.0) # Sample mean for stationary
} else if(d < 0.75) {
return(0.5 * (1 + cos(4 * pi * d))) # Smooth transition
} else {
return(0.0) # First observation for persistent
}
}

2. The most critical issue was in the ELW2S function, which computed detrended data Xt
but did not use it in either estimation step:

Original

Xt <- residuals(lm(data ~ poly(1:length(data), trend_order)))

aux_est <- local.W(data=data, m=m, taper=taper, ...) # Uses raw data
d.hat <- optim(..., data=data, ...) # Uses raw data

Corrected

Xt <- residuals(Im(data ~ poly(1:length(data), trend_order)))
aux_est <- local.W(data=Xt, m=m, taper=taper, ...) # Uses Xt
d.hat <- optim(..., data=Xt, ...) # Uses Xt

3. Finally, a more minor change, the original weighted objective function removed the first
observation, but we now keep all observations.

Original
data <- (data - wd.elw(d)*mean(data) - (1-wd.elw(d))x*datal[1])[-1]

Corrected

weight <- wd.elw(d)

myu <- weight * mean(data) + (1 - weight) * datal[1]
data_corrected <- data - myu # No observation removal

These corrections proved to be necessary for accurate implementation of the HC tapered LW
and two-step ELW estimators. We verified our corrections by replicating the Monte Carlo
experiments in Hurvich and Chen (2000) Table 1 and Shimotsu (2010) Table 8. The corrected
implementations agree closely with the published results from both papers and our PyELW
implementation, while the original implementations yield biased results. Our replication code
along with our corrected R implementations is available in the R/ directory of the PyELW
repository.

22 Local Whittle Estimation in Python

Affiliation:

Jason R. Blevins

Department of Economics

The Ohio State University
1945 N. High Street

Columbus, OH 43210

E-mail: blevins.141@osu.edu
URL: https://jblevins.org/

mailto:blevins.141@osu.edu
https://jblevins.org/

	Introduction
	Existing packages
	Organization of paper

	Semiparametric estimation of fractional integration
	The local Whittle estimator
	Tapered local Whittle estimators
	The exact local Whittle estimator
	Two-step exact local Whittle estimator
	Computational considerations

	Package description and examples
	Main estimator classes
	LW Class
	ELW Class
	TwoStepELW Class

	Basic initialization and estimation
	Auxiliary functions
	Examples
	Example 1: Simulated ARFIMA data
	Example 2: Nile River Level Data
	Example 3: U.S. real GDP data from FRED

	Validation and replication
	Simulation-based tests
	Empirical validation tests
	Cross-platform validation tests
	Other Tests

	Summary
	Corrections to R LongMemoryTS package

