Clicky

itex

itex is very close to LaTeX but with a few minor differences, namely:

Below is a list of itex commands and corresponding rendered results, grouped by category.


Greek Letters

Command Result Command Result Command Result
\alpha α \Alpha Α
\beta β \Beta Β
\gamma γ \Gamma Γ
\delta δ \Delta Δ
\epsilon ϵ \varepsilon ε E E
\zeta ζ \Zeta Ζ
\eta η \Eta Η
\theta θ \vartheta ϑ \Theta Θ
\iota ι \Iota Ι
\kappa κ \varkappa ϰ \Kappa Κ
\lambda λ \Lambda Λ
\mu μ \Mu Μ
\nu ν \Nu Ν
\xi ξ \Xi Ξ
\omicron O O
\pi π \varpi ϖ \Pi Π
\rho ρ \varrho ϱ \Rho Ρ
\sigma σ \varsigma ς \Sigma Σ
\tau τ \Tau Τ
\upsilon υ \Upsilon ϒ
\phi ϕ \varphi φ \Phi Φ
\chi χ X X
\psi ψ \Psi Ψ
\omega ω \Omega Ω

Archaic Letters and Other Symbols

Command Result
\backepsilon ϶
\digamma ϝ
\mho

Log-like Symbols

Command Result Command Result Command Result
\arccos{x} arccosx \exp{x} expx \max{x} maxx
\arcsin{x} arcsinx \gcd{x} gcdx \min{x} minx
\arctan{x} arctanx \inf{x} infx x \mod{m} xmodm
\arg{x} argx \hom{x} homx x \pmod{m} x(modm)
\cos{x} cosx \ker{x} kerx \Pr{x} Prx
\cosh{x} coshx \lg{x} lgx \sec{x} secx
\cot{x} cotx \lim{x} limx \sin{x} sinx
\coth{x} cothx \liminf{x} liminfx \sinh{x} sinhx
\csc{x} cscx \limsup{x} limsupx \sup{x} supx
\deg{x} degx \ln{x} lnx \tan{x} tanx
\det{x} detx \log{x} logx \tanh{x} tanhx
\dim{x} dimx

Operators

Command Result Command Result
\amalg ⨿ \clubsuit
\angle \diamondsuit
\measuredangle \heartsuit
\sphericalangle \spadesuit
\approx \circ
\approxeq \bigcirc
\thickapprox \cong
\asymp \ncong
\backslash \ \dagger
\because \ddagger
\between \dashv
\bottom (\bot) \Vdash
\boxminus (\minusb) \vDash
\boxplus (\plusb) \nvDash
\boxtimes (\timesb) \VDash
\bowtie \nVDash
\bullet \vdash
\cap (\intersection) \nvdash
\cup (\union) \Vvdash
\cdot \Diamond
Command Result Command Result
\diamond \gg
\div ÷ \ggg
\equiv \geq (\ge)
\eqcirc \ngeq
\neq (\ne) \geqq
\Bumpeq \ngeqq ≧̸
\bumpeq \geqslant
\circeq \ngeqslant ⩾̸
\doteq \eqslantgtr
\doteqdot \gneq
\fallingdotseq \gneqq
\risingdotseq \gnapprox
\exists \gnsim
\nexists \gtrapprox
\flat \gtrsim
\forall \gtrdot
\frown \gtreqless
\gt > \gtreqqless
\ngtr \gtrless
Command Result Command Result
\gvertneqq ≩︀ \lesseqgtr
\in \lesseqqgtr
\notin \lessgtr
\ni \lesssim
\notni \lnapprox
\lhd \lneq
\unlhd \lneqq
\lt < \lnsim
\nless \ltimes
\ll \lvertneqq ≨︀
\lll \lozenge
\leq (\le) \blacklozenge
\nleq \mid (\shortmid)
\leqq \nmid
\nleqq ≦̸ \nshortmid
\leqslant \models
\nleqslant ⩽̸ \multimap
\eqslantless \nabla (\Del)
\lessapprox \natural
\lessdot \not (\neg) ¬
Command Result Command Result
\odot \curlyeqprec
\odash (\circleddash) \precsim
\otimes \precnsim
\oplus \prime
\parallel \backprime
\nparallel \propto
\shortparallel \varpropto
\nshortparallel \rhd
\partial \unrhd
\perp \rtimes
\pitchfork \setminus
\pm ± \smallsetminus
\mp \sharp
\prec \sim
\nprec \nsim
\precapprox \backsim
\precnapprox \simeq
\preceq \backsimeq
\npreceq ⪯̸ \thicksim
\preccurlyeq \smile
Command Result Command Result
\subset \succnsim
\nsubset ⊂⃒ \supset
\subseteq \nsupset ⊃⃒
\nsubseteq \supseteq
\subseteqq \nsupseteq
\nsubseteqq ⫅̸ \supseteqq
\subsetneq \supsetneq
\subsetneqq \supsetneqq
\varsubsetneq ⊊︀ \varsupsetneq ⊋︀
\varsubsetneqq ⫋︀ \varsupsetneqq ⫌︀
\Subset \Supset
\succ \square (\Box)
\nsucc \blacksquare (\qed)
\succeq \sqcup
\nsucceq ⪰̸ \sqcap
\succapprox \sqsubset
\succnapprox \sqsubseteq
\succcurlyeq \sqsupset
\curlyeqsucc \sqsupseteq
\succsim \star
Command Result
\bigstar
\therefore
\times ×
\top
\triangle
\triangledown
\triangleleft
\triangleright
\blacktriangle
\blacktriangledown
\bigtriangleup
\bigtriangledown
\uplus
\vee
\wedge
\wr

Arrows

Command Result
\rightarrow (\to)
\longrightarrow
\Rightarrow (\implies)
\hookrightarrow (\embedsin)
\mapsto (\map)
\leftarrow
\longleftarrow
\Leftarrow (\impliedby)
\hookleftarrow
\leftrightarrow
\Leftrightarrow
\Longleftrightarrow (\iff)
\nearrow (\nearr)
\nwarrow (\nwarr)
\searrow (\searr)
\swarrow (\swarr)
\neArrow (\neArr)
\nwArrow (\nwArr)
\seArrow (\seArr)
\swArrow (\swArr)
Command Result
\darr
\Downarrow
\uparr
\Uparrow
\downuparrow (\duparr, \updarr)
\Updownarrow
\leftsquigarrow
\rightsquigarrow
\leftrightsquigarrow
\upuparrows
\rightleftarrows
\rightrightarrows
\dashleftarrow
\dashrightarrow
\curvearrowleft
\curvearrowbotright
\downdownarrows
\leftleftarrows
\leftrightarrows
\righttoleftarrow
\lefttorightarrow
\circlearrowleft
\circlearrowright

Delimiters

Command Result
(x) (x)
[x] [x]
\langle x \rangle (\lang x \rang) x
\lbrace x \rbrace (\{x\}) {x}
\lceil x \rceil x
\lfloor x \rfloor x
\uparrow
\downarrow
\updownarrow
x \vert y x|y
\Vert x \Vert x
x/y x/y

Large Math Operators and Integrals

Command Result
\bigcup (\Union)
\bigcap (\Intersection)
\bigodot
\bigoplus (\Oplus)
\bigotimes (\Otimes)
\bigsqcup
\biguplus
\bigwedge (\Wedge)
\bigvee (\Vee)
\coprod (\coproduct)
\prod (\product)
\sum
\int (\integral)
\iint (\doubleintegral)
\iiint (\tripleintegral)
\iiiint (\quadrupleintegral)
\oint (\conint, \contourintegral)

Stretchiness?

Command Result
{\int e^{-\sqrt{\frac{a x + b}{c x + d}}} d x}
e ax+bcx+ddx
\int e^{-\sqrt{\frac{a x + b}{c x + d}}} d x
e ax+bcx+ddx
{\sum_{n=1}^\infty \frac{x^n}{\left(1- \frac{1}{x^n}\right)}}
n=1 x n(11x n)
\sum_{n=1}^\infty \frac{x^n}{\left(1- \frac{1}{x^n}\right)}
n=1 x n(11x n)
{\prod_{n=0}^\infty{\left(\frac{z^n-1}{z^n+1}\right)}^{-n}}
n=0 (z n1z n+1) n
\prod_{n=0}^\infty{\left(\frac{z^n-1}{z^n+1}\right)}^{-n}
n=0 (z n1z n+1) n

Punctuation

Dots

Command Result
\dots
\ldots
\cdots
\ddots
\udots
\vdots

Spaces

Command Result
a \, b, a \thinspace b ab, ab
a \: b, a \medspace b ab, ab
a \; b, a \thickspace b ab, ab
a \quad b ab
a \qquad b ab
a \! b, a \negspace b ab, ab
A + B \phantom{+ C} + D A+B+C+D
\left( \space{5}{0}{20} \right) ()

Note: the command \space{ht}{dp}{wd} creates a space of height ht, baseline depth dp, and width wd where ht and dp are measured in tenths of an ex (the height of the letter x) and wd is measured in tenths of an em (the width of the letter M).

Accents

Command Result
\bar{x} x¯
\overline{a b c} abc¯
( = \closure{a b c}) abc¯
( = \widebar{a b c}) abc¯
\vec{x} x
\widevec{a b c} abc
\dot{x} x˙
\ddot{x} x¨
\tilde{x} x˜
\widetilde{a b c} abc˜
\check{x} xˇ
\widecheck{a b c} abcˇ
\hat{x} x^
\widehat{a b c} abc^
\slash{D} D

Symbols

Command Result
\aleph
\beth
\ell
\hbar
\Im
\imath ı
\jmath ȷ
\eth ð
\Re
\wp
\infty (\infinity)
\empty (\emptyset)
\varnothing

Fractions, Sub/Superscripts and Roots


Sizes

Command Result
\displaystyle{\prod}
\textstyle{\prod}
\textsize{\prod}
\scriptsize{\prod}
\scriptscriptsize{\prod}

Styles

Command Result
\mathit{A B C D E F G H I J K L M N O P Q R S T U V W X Y Z} ABCDEFGHIJKLMNOPQRSTUVWXYZ
\mathbf{ABCDEFGHIJKLMNOPQRSTUVWXYZ} (\boldsymbol{ABCDEFGHIJKLMNOPQRSTUVWXYZ}) ABCDEFGHIJKLMNOPQRSTUVWXYZ
\mathrm{A B C D E F G H I J K L M N O P Q R S T U V W X Y Z} ABCDEFGHIJKLMNOPQRSTUVWXYZ
\mathbb{ABCDEFGHIJKLMNOPQRSTUVWXYZ} 𝔸𝔹ℂ𝔻𝔼𝔽𝔾ℍ𝕀𝕁𝕂𝕃𝕄ℕ𝕆ℙℚℝ𝕊𝕋𝕌𝕍𝕎𝕏𝕐ℤ
\mathbb{abcdefghijklmnopqrstuvwxyz} 𝕒𝕓𝕔𝕕𝕖𝕗𝕘𝕙𝕚𝕛𝕜𝕝𝕞𝕟𝕠𝕡𝕢𝕣𝕤𝕥𝕦𝕧𝕨𝕩𝕪𝕫
\mathfrak{ABCDEFGHIJKLMNOPQRSTUVWXYZ} (\mathfr{ABCDEFGHIJKLMNOPQRSTUVWXYZ}) 𝔄𝔅ℭ𝔇𝔈𝔉𝔊ℌℑ𝔍𝔎𝔏𝔐𝔑𝔒𝔓𝔔ℜ𝔖𝔗𝔘𝔙𝔚𝔛𝔜ℨ
\mathfrak{abcdefghijklmnopqrstuvwxyz} 𝔞𝔟𝔠𝔡𝔢𝔣𝔤𝔥𝔦𝔧𝔨𝔩𝔪𝔫𝔬𝔭𝔮𝔯𝔰𝔱𝔲𝔳𝔴𝔵𝔶𝔷
\mathcal{ABCDEFGHIJKLMNOPQRSTUVWXYZ} 𝒜ℬ𝒞𝒟ℰℱ𝒢ℋℐ𝒥𝒦ℒℳ𝒩𝒪𝒫𝒬ℛ𝒮𝒯𝒰𝒱𝒲𝒳𝒴𝒵
\mathcal{abcdefghijklmnopqrstuvwxyz} 𝒶𝒷𝒸𝒹ℯ𝒻ℊ𝒽𝒾𝒿𝓀𝓁𝓂𝓃ℴ𝓅𝓆𝓇𝓈𝓉𝓊𝓋𝓌𝓍𝓎𝓏

Matrices

No delimiters

\begin{matrix}
  x_{11} & x_{12} \\
  x_{21} & x_{22}
\end{matrix}

x 11 x 12 x 21 x 22

Parenthesis

\begin{pmatrix}
x_{11} & x_{12} \\
x_{21} & x_{22}
\end{pmatrix}

(x 11 x 12 x 21 x 22)

Bracketed

\begin{bmatrix}
x_{11} & x_{12} \\
x_{21} & x_{22}
\end{bmatrix}

[x 11 x 12 x 21 x 22]

Braces

\begin{Bmatrix}
x_{11} & x_{12} \\
x_{21} & x_{22}
\end{Bmatrix}

{x 11 x 12 x 21 x 22}

Vertical bars

\begin{vmatrix}
x_{11} & x_{12} \\
x_{21} & x_{22}
\end{vmatrix}

x 11 x 12 x 21 x 22

Double vertical bars

\begin{Vmatrix}
x_{11} & x_{12} \\
x_{21} & x_{22}
\end{Vmatrix}

x 11 x 12 x 21 x 22

Small

\begin{smallmatrix}
x_{11} & x_{12} \\
x_{21} & x_{22}
\end{smallmatrix}

x 11 x 12 x 21 x 22


Alignment

Cases

f(x|\lambda) =
\begin{cases}
\lambda e^{-\lambda x} & x \geq 0, \\
0 & \text{otherwise}
\end{cases}

f(x|λ)={λe λx x0, 0 otherwise

Aligned

\begin{aligned}
y_1 &= \beta_{11} + \beta_{12} x + \varepsilon_1 \\
y_2 &= \alpha_{21} y_1 + \beta_{21} + \beta_{22} x + \varepsilon_2
\end{aligned}

y 1 =β 11+β 12x+ε 1 y 2 =α 21y 1+β 21+β 22x+ε 2

Gathered

\begin{gathered}
y_1 = \beta_{11} + \beta_{12} x + \varepsilon_1 \\
y_2 = \alpha_{21} y_1 + \beta_{21} + \beta_{22} x + \varepsilon_2
\end{gathered}

y 1=β 11+β 12x+ε 1 y 2=α 21y 1+β 21+β 22x+ε 2

Split

\begin{split}
\mathop{E}\frac{\partial \ln L}{\partial \theta}
  &=\mathop{E}\left[\frac{1}{L} \frac{\partial L}{\partial \theta}\right]\\
  &=\int\left[\frac{1}{L} \frac{\partial L}{\partial \theta}\right] L\;dz\\
  &=\int\frac{\partial L}{\partial \theta}\;dz
\end{split}

ElnLθ =E[1LLθ] =[1LLθ]Ldz =Lθdz


Colors

Named HTML colors are supported: aqua, black, blue, fuchsia, gray, green, lime, maroon, navy, olive, purple, red, silver, teal, white, and yellow as well as RGB hexadecimal colors of the form #rgb or #rrggbb.

Foreground

a { b \color{red} c \color{#0F0} d } e

abcde

Background

a {b \bgcolor{red} c \bgcolor{#0F0} d } e

abcde

{\bgcolor{red} a b} c {\bgcolor{#0F0}d e}

abcde